mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 05:34:28 +00:00
Merge pull request #10 from p2p-ld/nwb-loader
Some checks failed
Lint / Ruff Linting (push) Has been cancelled
Lint / Black Formatting (push) Has been cancelled
Lint / Check for spelling errors (push) Has been cancelled
Model Rebuild / build_models (push) Has been cancelled
Tests / test (3.10) (push) Has been cancelled
Tests / test (3.11) (push) Has been cancelled
Tests / test (3.12) (push) Has been cancelled
Tests / finish-coverage (push) Has been cancelled
Some checks failed
Lint / Ruff Linting (push) Has been cancelled
Lint / Black Formatting (push) Has been cancelled
Lint / Check for spelling errors (push) Has been cancelled
Model Rebuild / build_models (push) Has been cancelled
Tests / test (3.10) (push) Has been cancelled
Tests / test (3.11) (push) Has been cancelled
Tests / test (3.12) (push) Has been cancelled
Tests / finish-coverage (push) Has been cancelled
NWB Loader
This commit is contained in:
commit
f94a144d75
331 changed files with 11758 additions and 3449 deletions
5
.github/workflows/tests.yml
vendored
5
.github/workflows/tests.yml
vendored
|
@ -36,7 +36,10 @@ jobs:
|
|||
nwb_models/pyproject.toml
|
||||
|
||||
- name: Install dependencies
|
||||
run: pip install -e .[tests]
|
||||
run: |
|
||||
pip install -e .[tests]
|
||||
pip install -e ../nwb_schema_language
|
||||
pip install -e ../nwb_models
|
||||
working-directory: nwb_linkml
|
||||
|
||||
- name: Run Tests
|
||||
|
|
|
@ -49,6 +49,10 @@ Remove monkeypatches/overrides once PRs are closed
|
|||
Tests
|
||||
- [ ] Ensure schemas and pydantic modules in repos are up to date
|
||||
|
||||
Loading
|
||||
- [ ] Top-level containers are still a little janky, eg. how `ProcessingModule` just accepts
|
||||
extra args rather than properly abstracting `value` as a `__getitem__(self, key) -> T:`
|
||||
|
||||
## Docs TODOs
|
||||
|
||||
```{todolist}
|
||||
|
|
|
@ -71,7 +71,7 @@ adapter_parser = Sybil(
|
|||
|
||||
doctest_parser = Sybil(
|
||||
parsers=[DocTestParser(optionflags=ELLIPSIS + NORMALIZE_WHITESPACE), PythonCodeBlockParser()],
|
||||
patterns=["*.py"],
|
||||
patterns=["providers/git.py"],
|
||||
)
|
||||
|
||||
pytest_collect_file = (adapter_parser + doctest_parser).pytest()
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
groups = ["default", "dev", "plot", "tests"]
|
||||
strategy = ["inherit_metadata"]
|
||||
lock_version = "4.5.0"
|
||||
content_hash = "sha256:f219083028bd024c53bc55626c8b6088d6eb5c2ade56bd694a7a112098aa9bfc"
|
||||
content_hash = "sha256:1c297e11f6dc9e4f6b8d29df872177d2ce65bbd334c0b65aa5175dfb125c4d9f"
|
||||
|
||||
[[metadata.targets]]
|
||||
requires_python = ">=3.10,<3.13"
|
||||
|
@ -549,7 +549,7 @@ name = "h5py"
|
|||
version = "3.11.0"
|
||||
requires_python = ">=3.8"
|
||||
summary = "Read and write HDF5 files from Python"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
dependencies = [
|
||||
"numpy>=1.17.3",
|
||||
]
|
||||
|
@ -580,6 +580,26 @@ files = [
|
|||
{file = "hbreader-0.9.1.tar.gz", hash = "sha256:d2c132f8ba6276d794c66224c3297cec25c8079d0a4cf019c061611e0a3b94fa"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "hdmf"
|
||||
version = "3.14.3"
|
||||
requires_python = ">=3.8"
|
||||
summary = "A hierarchical data modeling framework for modern science data standards"
|
||||
groups = ["dev", "tests"]
|
||||
dependencies = [
|
||||
"h5py>=2.10",
|
||||
"importlib-resources; python_version < \"3.9\"",
|
||||
"jsonschema>=2.6.0",
|
||||
"numpy>=1.18",
|
||||
"pandas>=1.0.5",
|
||||
"ruamel-yaml>=0.16",
|
||||
"scipy>=1.4",
|
||||
]
|
||||
files = [
|
||||
{file = "hdmf-3.14.3-py3-none-any.whl", hash = "sha256:1417ccc0d336d535192b7a3db4c7354cbc15123f1ccb3cdd82e363308e78f9bc"},
|
||||
{file = "hdmf-3.14.3.tar.gz", hash = "sha256:e9548fc7bdbb534a2750092b6b9819df2ce50e27430866c3c32061a2306271cc"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "idna"
|
||||
version = "3.8"
|
||||
|
@ -751,7 +771,7 @@ name = "jsonschema"
|
|||
version = "4.23.0"
|
||||
requires_python = ">=3.8"
|
||||
summary = "An implementation of JSON Schema validation for Python"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
dependencies = [
|
||||
"attrs>=22.2.0",
|
||||
"importlib-resources>=1.4.0; python_version < \"3.9\"",
|
||||
|
@ -770,7 +790,7 @@ name = "jsonschema-specifications"
|
|||
version = "2023.12.1"
|
||||
requires_python = ">=3.8"
|
||||
summary = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
dependencies = [
|
||||
"importlib-resources>=1.4.0; python_version < \"3.9\"",
|
||||
"referencing>=0.31.0",
|
||||
|
@ -976,7 +996,7 @@ name = "networkx"
|
|||
version = "3.3"
|
||||
requires_python = ">=3.10"
|
||||
summary = "Python package for creating and manipulating graphs and networks"
|
||||
groups = ["dev", "tests"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
files = [
|
||||
{file = "networkx-3.3-py3-none-any.whl", hash = "sha256:28575580c6ebdaf4505b22c6256a2b9de86b316dc63ba9e93abde3d78dfdbcf2"},
|
||||
{file = "networkx-3.3.tar.gz", hash = "sha256:0c127d8b2f4865f59ae9cb8aafcd60b5c70f3241ebd66f7defad7c4ab90126c9"},
|
||||
|
@ -984,45 +1004,36 @@ files = [
|
|||
|
||||
[[package]]
|
||||
name = "numpy"
|
||||
version = "2.1.0"
|
||||
requires_python = ">=3.10"
|
||||
version = "1.26.4"
|
||||
requires_python = ">=3.9"
|
||||
summary = "Fundamental package for array computing in Python"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
files = [
|
||||
{file = "numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6326ab99b52fafdcdeccf602d6286191a79fe2fda0ae90573c5814cd2b0bc1b8"},
|
||||
{file = "numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0937e54c09f7a9a68da6889362ddd2ff584c02d015ec92672c099b61555f8911"},
|
||||
{file = "numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:30014b234f07b5fec20f4146f69e13cfb1e33ee9a18a1879a0142fbb00d47673"},
|
||||
{file = "numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:899da829b362ade41e1e7eccad2cf274035e1cb36ba73034946fccd4afd8606b"},
|
||||
{file = "numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08801848a40aea24ce16c2ecde3b756f9ad756586fb2d13210939eb69b023f5b"},
|
||||
{file = "numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:398049e237d1aae53d82a416dade04defed1a47f87d18d5bd615b6e7d7e41d1f"},
|
||||
{file = "numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0abb3916a35d9090088a748636b2c06dc9a6542f99cd476979fb156a18192b84"},
|
||||
{file = "numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:10e2350aea18d04832319aac0f887d5fcec1b36abd485d14f173e3e900b83e33"},
|
||||
{file = "numpy-2.1.0-cp310-cp310-win32.whl", hash = "sha256:f6b26e6c3b98adb648243670fddc8cab6ae17473f9dc58c51574af3e64d61211"},
|
||||
{file = "numpy-2.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:f505264735ee074250a9c78247ee8618292091d9d1fcc023290e9ac67e8f1afa"},
|
||||
{file = "numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:76368c788ccb4f4782cf9c842b316140142b4cbf22ff8db82724e82fe1205dce"},
|
||||
{file = "numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:f8e93a01a35be08d31ae33021e5268f157a2d60ebd643cfc15de6ab8e4722eb1"},
|
||||
{file = "numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:9523f8b46485db6939bd069b28b642fec86c30909cea90ef550373787f79530e"},
|
||||
{file = "numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54139e0eb219f52f60656d163cbe67c31ede51d13236c950145473504fa208cb"},
|
||||
{file = "numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5ebbf9fbdabed208d4ecd2e1dfd2c0741af2f876e7ae522c2537d404ca895c3"},
|
||||
{file = "numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:378cb4f24c7d93066ee4103204f73ed046eb88f9ad5bb2275bb9fa0f6a02bd36"},
|
||||
{file = "numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8f699a709120b220dfe173f79c73cb2a2cab2c0b88dd59d7b49407d032b8ebd"},
|
||||
{file = "numpy-2.1.0-cp311-cp311-win32.whl", hash = "sha256:ffbd6faeb190aaf2b5e9024bac9622d2ee549b7ec89ef3a9373fa35313d44e0e"},
|
||||
{file = "numpy-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0af3a5987f59d9c529c022c8c2a64805b339b7ef506509fba7d0556649b9714b"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-win32.whl", hash = "sha256:c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02"},
|
||||
{file = "numpy-2.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc"},
|
||||
{file = "numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:15ef8b2177eeb7e37dd5ef4016f30b7659c57c2c0b57a779f1d537ff33a72c7b"},
|
||||
{file = "numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:e5f0642cdf4636198a4990de7a71b693d824c56a757862230454629cf62e323d"},
|
||||
{file = "numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f15976718c004466406342789f31b6673776360f3b1e3c575f25302d7e789575"},
|
||||
{file = "numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:6c1de77ded79fef664d5098a66810d4d27ca0224e9051906e634b3f7ead134c2"},
|
||||
{file = "numpy-2.1.0.tar.gz", hash = "sha256:7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2"},
|
||||
{file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"},
|
||||
{file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"},
|
||||
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"},
|
||||
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"},
|
||||
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"},
|
||||
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"},
|
||||
{file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"},
|
||||
{file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"},
|
||||
{file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"},
|
||||
{file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"},
|
||||
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"},
|
||||
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"},
|
||||
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"},
|
||||
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"},
|
||||
{file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"},
|
||||
{file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"},
|
||||
{file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"},
|
||||
{file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"},
|
||||
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"},
|
||||
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"},
|
||||
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"},
|
||||
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"},
|
||||
{file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"},
|
||||
{file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"},
|
||||
{file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -1102,7 +1113,7 @@ name = "pandas"
|
|||
version = "2.2.2"
|
||||
requires_python = ">=3.9"
|
||||
summary = "Powerful data structures for data analysis, time series, and statistics"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
dependencies = [
|
||||
"numpy>=1.22.4; python_version < \"3.11\"",
|
||||
"numpy>=1.23.2; python_version == \"3.11\"",
|
||||
|
@ -1350,6 +1361,24 @@ files = [
|
|||
{file = "PyJSG-0.11.10.tar.gz", hash = "sha256:4bd6e3ff2833fa2b395bbe803a2d72a5f0bab5b7285bccd0da1a1bc0aee88bfa"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pynwb"
|
||||
version = "2.8.1"
|
||||
requires_python = ">=3.8"
|
||||
summary = "Package for working with Neurodata stored in the NWB format."
|
||||
groups = ["dev", "tests"]
|
||||
dependencies = [
|
||||
"h5py>=2.10",
|
||||
"hdmf>=3.14.0",
|
||||
"numpy<2.0,>=1.18",
|
||||
"pandas>=1.1.5",
|
||||
"python-dateutil>=2.7.3",
|
||||
]
|
||||
files = [
|
||||
{file = "pynwb-2.8.1-py3-none-any.whl", hash = "sha256:f3c392652b26396e135cf6f1abd570d413c9eb7bf5bdb1a89d899852338fdf6c"},
|
||||
{file = "pynwb-2.8.1.tar.gz", hash = "sha256:498e4bc46a7b0a1331a0f754bac72ea7f9d10d1bba35af3c7be78a61bb1d104b"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pyparsing"
|
||||
version = "3.1.4"
|
||||
|
@ -1469,7 +1498,7 @@ name = "python-dateutil"
|
|||
version = "2.9.0.post0"
|
||||
requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
|
||||
summary = "Extensions to the standard Python datetime module"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
dependencies = [
|
||||
"six>=1.5",
|
||||
]
|
||||
|
@ -1506,7 +1535,7 @@ files = [
|
|||
name = "pytz"
|
||||
version = "2024.1"
|
||||
summary = "World timezone definitions, modern and historical"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
files = [
|
||||
{file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"},
|
||||
{file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"},
|
||||
|
@ -1597,7 +1626,7 @@ name = "referencing"
|
|||
version = "0.35.1"
|
||||
requires_python = ">=3.8"
|
||||
summary = "JSON Referencing + Python"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
dependencies = [
|
||||
"attrs>=22.2.0",
|
||||
"rpds-py>=0.7.0",
|
||||
|
@ -1701,7 +1730,7 @@ name = "rpds-py"
|
|||
version = "0.20.0"
|
||||
requires_python = ">=3.8"
|
||||
summary = "Python bindings to Rust's persistent data structures (rpds)"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
files = [
|
||||
{file = "rpds_py-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3ad0fda1635f8439cde85c700f964b23ed5fc2d28016b32b9ee5fe30da5c84e2"},
|
||||
{file = "rpds_py-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9bb4a0d90fdb03437c109a17eade42dfbf6190408f29b2744114d11586611d6f"},
|
||||
|
@ -1762,7 +1791,7 @@ name = "ruamel-yaml"
|
|||
version = "0.18.6"
|
||||
requires_python = ">=3.7"
|
||||
summary = "ruamel.yaml is a YAML parser/emitter that supports roundtrip preservation of comments, seq/map flow style, and map key order"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
dependencies = [
|
||||
"ruamel-yaml-clib>=0.2.7; platform_python_implementation == \"CPython\" and python_version < \"3.13\"",
|
||||
]
|
||||
|
@ -1776,7 +1805,7 @@ name = "ruamel-yaml-clib"
|
|||
version = "0.2.8"
|
||||
requires_python = ">=3.6"
|
||||
summary = "C version of reader, parser and emitter for ruamel.yaml derived from libyaml"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
marker = "platform_python_implementation == \"CPython\" and python_version < \"3.13\""
|
||||
files = [
|
||||
{file = "ruamel.yaml.clib-0.2.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:b42169467c42b692c19cf539c38d4602069d8c1505e97b86387fcf7afb766e1d"},
|
||||
|
@ -1833,6 +1862,43 @@ files = [
|
|||
{file = "ruff-0.6.2.tar.gz", hash = "sha256:239ee6beb9e91feb8e0ec384204a763f36cb53fb895a1a364618c6abb076b3be"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "scipy"
|
||||
version = "1.14.1"
|
||||
requires_python = ">=3.10"
|
||||
summary = "Fundamental algorithms for scientific computing in Python"
|
||||
groups = ["dev", "tests"]
|
||||
dependencies = [
|
||||
"numpy<2.3,>=1.23.5",
|
||||
]
|
||||
files = [
|
||||
{file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"},
|
||||
{file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"},
|
||||
{file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"},
|
||||
{file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"},
|
||||
{file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"},
|
||||
{file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"},
|
||||
{file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"},
|
||||
{file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"},
|
||||
{file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"},
|
||||
{file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"},
|
||||
{file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"},
|
||||
{file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"},
|
||||
{file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"},
|
||||
{file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"},
|
||||
{file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"},
|
||||
{file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"},
|
||||
{file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"},
|
||||
{file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"},
|
||||
{file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"},
|
||||
{file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"},
|
||||
{file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"},
|
||||
{file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"},
|
||||
{file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"},
|
||||
{file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"},
|
||||
{file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "setuptools"
|
||||
version = "74.0.0"
|
||||
|
@ -2023,7 +2089,7 @@ name = "tzdata"
|
|||
version = "2024.1"
|
||||
requires_python = ">=2"
|
||||
summary = "Provider of IANA time zone data"
|
||||
groups = ["default"]
|
||||
groups = ["default", "dev", "tests"]
|
||||
files = [
|
||||
{file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"},
|
||||
{file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"},
|
||||
|
|
|
@ -9,7 +9,7 @@ license = {text = "AGPL-3.0"}
|
|||
readme = "README.md"
|
||||
requires-python = "<3.13,>=3.10"
|
||||
dependencies = [
|
||||
"nwb-models>=0.1.0",
|
||||
"nwb-models>=0.2.0",
|
||||
"pyyaml>=6.0",
|
||||
"linkml-runtime>=1.7.7",
|
||||
"nwb-schema-language>=0.1.3",
|
||||
|
@ -22,9 +22,10 @@ dependencies = [
|
|||
"pydantic-settings>=2.0.3",
|
||||
"tqdm>=4.66.1",
|
||||
'typing-extensions>=4.12.2;python_version<"3.11"',
|
||||
"numpydantic>=1.3.3",
|
||||
"numpydantic>=1.5.0",
|
||||
"black>=24.4.2",
|
||||
"pandas>=2.2.2",
|
||||
"networkx>=3.3",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
|
@ -44,6 +45,7 @@ tests = [
|
|||
"pytest-cov<5.0.0,>=4.1.0",
|
||||
"sybil>=6.0.3",
|
||||
"requests-cache>=1.2.1",
|
||||
"pynwb>=2.8.1",
|
||||
]
|
||||
dev = [
|
||||
"nwb-linkml[tests]",
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
Base class for adapters
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from abc import abstractmethod
|
||||
from dataclasses import dataclass, field
|
||||
|
@ -101,6 +102,19 @@ class Adapter(BaseModel):
|
|||
"""Abstract base class for adapters"""
|
||||
|
||||
_logger: Optional[Logger] = None
|
||||
_debug: Optional[bool] = None
|
||||
|
||||
@property
|
||||
def debug(self) -> bool:
|
||||
"""
|
||||
Whether we are in debug mode, which adds extra metadata in generated elements.
|
||||
|
||||
Set explicitly via ``_debug`` , or else checks for the truthiness of the
|
||||
environment variable ``NWB_LINKML_DEBUG``
|
||||
"""
|
||||
if self._debug is None:
|
||||
self._debug = bool(os.environ.get("NWB_LINKML_DEBUG", False))
|
||||
return self._debug
|
||||
|
||||
@property
|
||||
def logger(self) -> Logger:
|
||||
|
|
|
@ -10,7 +10,7 @@ from linkml_runtime.linkml_model.meta import SlotDefinition
|
|||
from nwb_linkml.adapters.adapter import Adapter, BuildResult, is_1d
|
||||
from nwb_linkml.adapters.array import ArrayAdapter
|
||||
from nwb_linkml.maps import Map
|
||||
from nwb_linkml.maps.dtype import handle_dtype
|
||||
from nwb_linkml.maps.dtype import handle_dtype, inlined
|
||||
from nwb_schema_language import Attribute
|
||||
|
||||
|
||||
|
@ -104,6 +104,7 @@ class MapScalar(AttributeMap):
|
|||
range=handle_dtype(attr.dtype),
|
||||
description=attr.doc,
|
||||
required=attr.required,
|
||||
inlined=inlined(attr.dtype),
|
||||
**cls.handle_defaults(attr),
|
||||
)
|
||||
return BuildResult(slots=[slot])
|
||||
|
@ -151,6 +152,7 @@ class MapArray(AttributeMap):
|
|||
multivalued=multivalued,
|
||||
description=attr.doc,
|
||||
required=attr.required,
|
||||
inlined=inlined(attr.dtype),
|
||||
**expressions,
|
||||
**cls.handle_defaults(attr),
|
||||
)
|
||||
|
@ -171,7 +173,10 @@ class AttributeAdapter(Adapter):
|
|||
Build the slot definitions, every attribute should have a map.
|
||||
"""
|
||||
map = self.match()
|
||||
return map.apply(self.cls)
|
||||
res = map.apply(self.cls)
|
||||
if self.debug: # pragma: no cover - only used in development
|
||||
res = self._amend_debug(res, map)
|
||||
return res
|
||||
|
||||
def match(self) -> Optional[Type[AttributeMap]]:
|
||||
"""
|
||||
|
@ -195,3 +200,13 @@ class AttributeAdapter(Adapter):
|
|||
return None
|
||||
else:
|
||||
return matches[0]
|
||||
|
||||
def _amend_debug(
|
||||
self, res: BuildResult, map: Optional[Type[AttributeMap]] = None
|
||||
) -> BuildResult: # pragma: no cover - only used in development
|
||||
map_name = "None" if map is None else map.__name__
|
||||
for cls in res.classes:
|
||||
cls.annotations["attribute_map"] = {"tag": "attribute_map", "value": map_name}
|
||||
for slot in res.slots:
|
||||
slot.annotations["attribute_map"] = {"tag": "attribute_map", "value": map_name}
|
||||
return res
|
||||
|
|
|
@ -92,6 +92,13 @@ class ClassAdapter(Adapter):
|
|||
# Get vanilla top-level attributes
|
||||
kwargs["attributes"].extend(self.build_attrs(self.cls))
|
||||
|
||||
if self.debug: # pragma: no cover - only used in development
|
||||
kwargs["annotations"] = {}
|
||||
kwargs["annotations"]["group_adapter"] = {
|
||||
"tag": "group_adapter",
|
||||
"value": "container_slot",
|
||||
}
|
||||
|
||||
if extra_attrs is not None:
|
||||
if isinstance(extra_attrs, SlotDefinition):
|
||||
extra_attrs = [extra_attrs]
|
||||
|
@ -230,18 +237,23 @@ class ClassAdapter(Adapter):
|
|||
ifabsent=f"string({name})",
|
||||
equals_string=equals_string,
|
||||
range="string",
|
||||
identifier=True,
|
||||
)
|
||||
else:
|
||||
name_slot = SlotDefinition(name="name", required=True, range="string")
|
||||
name_slot = SlotDefinition(name="name", required=True, range="string", identifier=True)
|
||||
return name_slot
|
||||
|
||||
def build_self_slot(self) -> SlotDefinition:
|
||||
"""
|
||||
If we are a child class, we make a slot so our parent can refer to us
|
||||
"""
|
||||
return SlotDefinition(
|
||||
slot = SlotDefinition(
|
||||
name=self._get_slot_name(),
|
||||
description=self.cls.doc,
|
||||
range=self._get_full_name(),
|
||||
inlined=True,
|
||||
**QUANTITY_MAP[self.cls.quantity],
|
||||
)
|
||||
if self.debug: # pragma: no cover - only used in development
|
||||
slot.annotations["group_adapter"] = {"tag": "group_adapter", "value": "self_slot"}
|
||||
return slot
|
||||
|
|
|
@ -11,7 +11,7 @@ from nwb_linkml.adapters.adapter import BuildResult, has_attrs, is_1d, is_compou
|
|||
from nwb_linkml.adapters.array import ArrayAdapter
|
||||
from nwb_linkml.adapters.classes import ClassAdapter
|
||||
from nwb_linkml.maps import QUANTITY_MAP, Map
|
||||
from nwb_linkml.maps.dtype import flat_to_linkml, handle_dtype
|
||||
from nwb_linkml.maps.dtype import flat_to_linkml, handle_dtype, inlined
|
||||
from nwb_linkml.maps.naming import camel_to_snake
|
||||
from nwb_schema_language import Dataset
|
||||
|
||||
|
@ -147,6 +147,7 @@ class MapScalarAttributes(DatasetMap):
|
|||
name:
|
||||
name: name
|
||||
ifabsent: string(starting_time)
|
||||
identifier: true
|
||||
range: string
|
||||
required: true
|
||||
equals_string: starting_time
|
||||
|
@ -245,6 +246,7 @@ class MapListlike(DatasetMap):
|
|||
attributes:
|
||||
name:
|
||||
name: name
|
||||
identifier: true
|
||||
range: string
|
||||
required: true
|
||||
value:
|
||||
|
@ -257,6 +259,8 @@ class MapListlike(DatasetMap):
|
|||
range: Image
|
||||
required: true
|
||||
multivalued: true
|
||||
inlined: true
|
||||
inlined_as_list: true
|
||||
tree_root: true
|
||||
|
||||
"""
|
||||
|
@ -299,6 +303,8 @@ class MapListlike(DatasetMap):
|
|||
description=cls.doc,
|
||||
required=cls.quantity not in ("*", "?"),
|
||||
annotations=[{"source_type": "reference"}],
|
||||
inlined=True,
|
||||
inlined_as_list=True,
|
||||
)
|
||||
res.classes[0].attributes["value"] = slot
|
||||
return res
|
||||
|
@ -384,13 +390,11 @@ class MapArraylike(DatasetMap):
|
|||
- ``False``
|
||||
|
||||
"""
|
||||
dtype = handle_dtype(cls.dtype)
|
||||
return (
|
||||
cls.name
|
||||
and (all([cls.dims, cls.shape]) or cls.neurodata_type_inc == "VectorData")
|
||||
and not has_attrs(cls)
|
||||
and not is_compound(cls)
|
||||
and dtype in flat_to_linkml
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
@ -418,6 +422,7 @@ class MapArraylike(DatasetMap):
|
|||
range=handle_dtype(cls.dtype),
|
||||
description=cls.doc,
|
||||
required=cls.quantity not in ("*", "?"),
|
||||
inlined=inlined(cls.dtype),
|
||||
**expressions,
|
||||
)
|
||||
]
|
||||
|
@ -430,6 +435,10 @@ class MapArrayLikeAttributes(DatasetMap):
|
|||
The most general case - treat everything that isn't handled by one of the special cases
|
||||
as an array!
|
||||
|
||||
We specifically include classes that have no attributes but also don't have a name,
|
||||
as they still require their own class (unlike :class:`.MapArrayLike` above, where we
|
||||
just generate an anonymous slot.)
|
||||
|
||||
Examples:
|
||||
|
||||
.. adapter:: DatasetAdapter
|
||||
|
@ -478,6 +487,7 @@ class MapArrayLikeAttributes(DatasetMap):
|
|||
attributes:
|
||||
name:
|
||||
name: name
|
||||
identifier: true
|
||||
range: string
|
||||
required: true
|
||||
resolution:
|
||||
|
@ -525,7 +535,7 @@ class MapArrayLikeAttributes(DatasetMap):
|
|||
return (
|
||||
all([cls.dims, cls.shape])
|
||||
and cls.neurodata_type_inc != "VectorData"
|
||||
and has_attrs(cls)
|
||||
and (has_attrs(cls) or not cls.name)
|
||||
and not is_compound(cls)
|
||||
and (dtype == "AnyType" or dtype in flat_to_linkml)
|
||||
)
|
||||
|
@ -540,7 +550,9 @@ class MapArrayLikeAttributes(DatasetMap):
|
|||
array_adapter = ArrayAdapter(cls.dims, cls.shape)
|
||||
expressions = array_adapter.make_slot()
|
||||
# make a slot for the arraylike class
|
||||
array_slot = SlotDefinition(name="value", range=handle_dtype(cls.dtype), **expressions)
|
||||
array_slot = SlotDefinition(
|
||||
name="value", range=handle_dtype(cls.dtype), inlined=inlined(cls.dtype), **expressions
|
||||
)
|
||||
res.classes[0].attributes.update({"value": array_slot})
|
||||
return res
|
||||
|
||||
|
@ -579,6 +591,7 @@ class MapClassRange(DatasetMap):
|
|||
description=cls.doc,
|
||||
range=f"{cls.neurodata_type_inc}",
|
||||
annotations=[{"named": True}, {"source_type": "neurodata_type_inc"}],
|
||||
inlined=True,
|
||||
**QUANTITY_MAP[cls.quantity],
|
||||
)
|
||||
res = BuildResult(slots=[this_slot])
|
||||
|
@ -590,102 +603,6 @@ class MapClassRange(DatasetMap):
|
|||
# --------------------------------------------------
|
||||
|
||||
|
||||
class MapVectorClassRange(DatasetMap):
|
||||
"""
|
||||
Map a ``VectorData`` class that is a reference to another class as simply
|
||||
a multivalued slot range, rather than an independent class
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def check(c, cls: Dataset) -> bool:
|
||||
"""
|
||||
Check that we are a VectorData object without any additional attributes
|
||||
with a dtype that refers to another class
|
||||
"""
|
||||
dtype = handle_dtype(cls.dtype)
|
||||
return (
|
||||
cls.neurodata_type_inc == "VectorData"
|
||||
and cls.name
|
||||
and not has_attrs(cls)
|
||||
and not (cls.shape or cls.dims)
|
||||
and not is_compound(cls)
|
||||
and dtype not in flat_to_linkml
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
c, cls: Dataset, res: Optional[BuildResult] = None, name: Optional[str] = None
|
||||
) -> BuildResult:
|
||||
"""
|
||||
Create a slot that replaces the base class just as a list[ClassRef]
|
||||
"""
|
||||
this_slot = SlotDefinition(
|
||||
name=cls.name,
|
||||
description=cls.doc,
|
||||
multivalued=True,
|
||||
range=handle_dtype(cls.dtype),
|
||||
required=cls.quantity not in ("*", "?"),
|
||||
)
|
||||
res = BuildResult(slots=[this_slot])
|
||||
return res
|
||||
|
||||
|
||||
#
|
||||
# class Map1DVector(DatasetMap):
|
||||
# """
|
||||
# ``VectorData`` is subclassed with a name but without dims or attributes,
|
||||
# treat this as a normal 1D array slot that replaces any class that would be built for this
|
||||
#
|
||||
# eg. all the datasets in epoch.TimeIntervals:
|
||||
#
|
||||
# .. code-block:: yaml
|
||||
#
|
||||
# groups:
|
||||
# - neurodata_type_def: TimeIntervals
|
||||
# neurodata_type_inc: DynamicTable
|
||||
# doc: A container for aggregating epoch data and the TimeSeries that each epoch applies
|
||||
# to.
|
||||
# datasets:
|
||||
# - name: start_time
|
||||
# neurodata_type_inc: VectorData
|
||||
# dtype: float32
|
||||
# doc: Start time of epoch, in seconds.
|
||||
#
|
||||
# """
|
||||
#
|
||||
# @classmethod
|
||||
# def check(c, cls: Dataset) -> bool:
|
||||
# """
|
||||
# Check that we're a 1d VectorData class
|
||||
# """
|
||||
# return (
|
||||
# cls.neurodata_type_inc == "VectorData"
|
||||
# and not cls.dims
|
||||
# and not cls.shape
|
||||
# and not cls.attributes
|
||||
# and not cls.neurodata_type_def
|
||||
# and not is_compound(cls)
|
||||
# and cls.name
|
||||
# )
|
||||
#
|
||||
# @classmethod
|
||||
# def apply(
|
||||
# c, cls: Dataset, res: Optional[BuildResult] = None, name: Optional[str] = None
|
||||
# ) -> BuildResult:
|
||||
# """
|
||||
# Return a simple multivalued slot
|
||||
# """
|
||||
# this_slot = SlotDefinition(
|
||||
# name=cls.name,
|
||||
# description=cls.doc,
|
||||
# range=handle_dtype(cls.dtype),
|
||||
# multivalued=True,
|
||||
# )
|
||||
# # No need to make a class for us, so we replace the existing build results
|
||||
# res = BuildResult(slots=[this_slot])
|
||||
# return res
|
||||
|
||||
|
||||
class MapNVectors(DatasetMap):
|
||||
"""
|
||||
An unnamed container that indicates an arbitrary quantity of some other neurodata type.
|
||||
|
@ -795,6 +712,7 @@ class MapCompoundDtype(DatasetMap):
|
|||
description=a_dtype.doc,
|
||||
range=handle_dtype(a_dtype.dtype),
|
||||
array=ArrayExpression(exact_number_dimensions=1),
|
||||
inlined=inlined(a_dtype.dtype),
|
||||
**QUANTITY_MAP[cls.quantity],
|
||||
)
|
||||
res.classes[0].attributes.update(slots)
|
||||
|
@ -826,6 +744,8 @@ class DatasetAdapter(ClassAdapter):
|
|||
if map is not None:
|
||||
res = map.apply(self.cls, res, self._get_full_name())
|
||||
|
||||
if self.debug: # pragma: no cover - only used in development
|
||||
res = self._amend_debug(res, map)
|
||||
return res
|
||||
|
||||
def match(self) -> Optional[Type[DatasetMap]]:
|
||||
|
@ -850,3 +770,13 @@ class DatasetAdapter(ClassAdapter):
|
|||
return None
|
||||
else:
|
||||
return matches[0]
|
||||
|
||||
def _amend_debug(
|
||||
self, res: BuildResult, map: Optional[Type[DatasetMap]] = None
|
||||
) -> BuildResult: # pragma: no cover - only used in development
|
||||
map_name = "None" if map is None else map.__name__
|
||||
for cls in res.classes:
|
||||
cls.annotations["dataset_map"] = {"tag": "dataset_map", "value": map_name}
|
||||
for slot in res.slots:
|
||||
slot.annotations["dataset_map"] = {"tag": "dataset_map", "value": map_name}
|
||||
return res
|
||||
|
|
|
@ -68,11 +68,17 @@ class GroupAdapter(ClassAdapter):
|
|||
if not self.cls.links:
|
||||
return []
|
||||
|
||||
annotations = [{"tag": "source_type", "value": "link"}]
|
||||
|
||||
if self.debug: # pragma: no cover - only used in development
|
||||
annotations.append({"tag": "group_adapter", "value": "link"})
|
||||
|
||||
slots = [
|
||||
SlotDefinition(
|
||||
name=link.name,
|
||||
any_of=[{"range": link.target_type}, {"range": "string"}],
|
||||
annotations=[{"tag": "source_type", "value": "link"}],
|
||||
annotations=annotations,
|
||||
inlined=True,
|
||||
**QUANTITY_MAP[link.quantity],
|
||||
)
|
||||
for link in self.cls.links
|
||||
|
@ -111,6 +117,9 @@ class GroupAdapter(ClassAdapter):
|
|||
inlined_as_list=False,
|
||||
)
|
||||
|
||||
if self.debug: # pragma: no cover - only used in development
|
||||
slot.annotations["group_adapter"] = {"tag": "group_adapter", "value": "container_group"}
|
||||
|
||||
if self.parent is not None:
|
||||
# if we have a parent,
|
||||
# just return the slot itself without the class
|
||||
|
@ -144,17 +153,20 @@ class GroupAdapter(ClassAdapter):
|
|||
"""
|
||||
name = camel_to_snake(self.cls.neurodata_type_inc) if not self.cls.name else cls.name
|
||||
|
||||
return BuildResult(
|
||||
slots=[
|
||||
SlotDefinition(
|
||||
name=name,
|
||||
range=self.cls.neurodata_type_inc,
|
||||
description=self.cls.doc,
|
||||
**QUANTITY_MAP[cls.quantity],
|
||||
)
|
||||
]
|
||||
slot = SlotDefinition(
|
||||
name=name,
|
||||
range=self.cls.neurodata_type_inc,
|
||||
description=self.cls.doc,
|
||||
inlined=True,
|
||||
inlined_as_list=False,
|
||||
**QUANTITY_MAP[cls.quantity],
|
||||
)
|
||||
|
||||
if self.debug: # pragma: no cover - only used in development
|
||||
slot.annotations["group_adapter"] = {"tag": "group_adapter", "value": "container_slot"}
|
||||
|
||||
return BuildResult(slots=[slot])
|
||||
|
||||
def build_subclasses(self) -> BuildResult:
|
||||
"""
|
||||
Build nested groups and datasets
|
||||
|
@ -166,20 +178,9 @@ class GroupAdapter(ClassAdapter):
|
|||
# for creating slots vs. classes is handled by the adapter class
|
||||
dataset_res = BuildResult()
|
||||
for dset in self.cls.datasets:
|
||||
# if dset.name == 'timestamps':
|
||||
# pdb.set_trace()
|
||||
dset_adapter = DatasetAdapter(cls=dset, parent=self)
|
||||
dataset_res += dset_adapter.build()
|
||||
|
||||
# Actually i'm not sure we have to special case this, we could handle it in
|
||||
# i/o instead
|
||||
|
||||
# Groups are a bit more complicated because they can also behave like
|
||||
# range declarations:
|
||||
# eg. a group can have multiple groups with `neurodata_type_inc`, no name,
|
||||
# and quantity of *,
|
||||
# the group can then contain any number of groups of those included types as direct children
|
||||
|
||||
group_res = BuildResult()
|
||||
|
||||
for group in self.cls.groups:
|
||||
|
@ -190,6 +191,33 @@ class GroupAdapter(ClassAdapter):
|
|||
|
||||
return res
|
||||
|
||||
def build_self_slot(self) -> SlotDefinition:
|
||||
"""
|
||||
If we are a child class, we make a slot so our parent can refer to us
|
||||
|
||||
Groups are a bit more complicated because they can also behave like
|
||||
range declarations:
|
||||
eg. a group can have multiple groups with `neurodata_type_inc`, no name,
|
||||
and quantity of *,
|
||||
the group can then contain any number of groups of those included types as direct children
|
||||
|
||||
We make sure that we're inlined as a dict so our parent class can refer to us like::
|
||||
|
||||
parent.{slot_name}[{name}] = self
|
||||
|
||||
"""
|
||||
slot = SlotDefinition(
|
||||
name=self._get_slot_name(),
|
||||
description=self.cls.doc,
|
||||
range=self._get_full_name(),
|
||||
inlined=True,
|
||||
inlined_as_list=True,
|
||||
**QUANTITY_MAP[self.cls.quantity],
|
||||
)
|
||||
if self.debug: # pragma: no cover - only used in development
|
||||
slot.annotations["group_adapter"] = {"tag": "group_adapter", "value": "container_slot"}
|
||||
return slot
|
||||
|
||||
def _check_if_container(self, group: Group) -> bool:
|
||||
"""
|
||||
Check if a given subgroup is a container subgroup,
|
||||
|
|
|
@ -48,7 +48,16 @@ class NamespacesAdapter(Adapter):
|
|||
|
||||
need_imports = []
|
||||
for needed in ns_adapter.needed_imports.values():
|
||||
need_imports.extend([n for n in needed if n not in ns_adapter.needed_imports])
|
||||
# try to locate imports implied by the namespace schema,
|
||||
# but are either not provided by the current namespace
|
||||
# or are otherwise already provided in `imported` by the loader function
|
||||
need_imports.extend(
|
||||
[
|
||||
n
|
||||
for n in needed
|
||||
if n not in ns_adapter.needed_imports and n not in ns_adapter.versions
|
||||
]
|
||||
)
|
||||
|
||||
for needed in need_imports:
|
||||
if needed in DEFAULT_REPOS:
|
||||
|
@ -56,6 +65,8 @@ class NamespacesAdapter(Adapter):
|
|||
needed_adapter = NamespacesAdapter.from_yaml(needed_source_ns)
|
||||
ns_adapter.imported.append(needed_adapter)
|
||||
|
||||
ns_adapter.populate_imports()
|
||||
|
||||
return ns_adapter
|
||||
|
||||
def build(
|
||||
|
@ -176,7 +187,6 @@ class NamespacesAdapter(Adapter):
|
|||
else:
|
||||
raise KeyError(f"No schema found that define {name}")
|
||||
|
||||
@model_validator(mode="after")
|
||||
def populate_imports(self) -> "NamespacesAdapter":
|
||||
"""
|
||||
Populate the imports that are needed for each schema file
|
||||
|
|
|
@ -6,11 +6,10 @@ See class and module docstrings for details :)
|
|||
"""
|
||||
|
||||
import re
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from types import ModuleType
|
||||
from typing import ClassVar, Dict, List, Optional, Tuple
|
||||
from typing import Callable, ClassVar, Dict, List, Literal, Optional, Tuple
|
||||
|
||||
from linkml.generators import PydanticGenerator
|
||||
from linkml.generators.pydanticgen.array import ArrayRepresentation, NumpydanticArray
|
||||
|
@ -23,11 +22,14 @@ from linkml_runtime.linkml_model.meta import (
|
|||
SlotDefinition,
|
||||
SlotDefinitionName,
|
||||
)
|
||||
from linkml_runtime.utils.compile_python import file_text
|
||||
from linkml_runtime.utils.formatutils import remove_empty_items
|
||||
from linkml_runtime.utils.schemaview import SchemaView
|
||||
|
||||
from nwb_linkml.includes.base import BASEMODEL_GETITEM
|
||||
from nwb_linkml.includes.base import (
|
||||
BASEMODEL_COERCE_CHILD,
|
||||
BASEMODEL_COERCE_VALUE,
|
||||
BASEMODEL_GETITEM,
|
||||
)
|
||||
from nwb_linkml.includes.hdmf import (
|
||||
DYNAMIC_TABLE_IMPORTS,
|
||||
DYNAMIC_TABLE_INJECTS,
|
||||
|
@ -36,7 +38,7 @@ from nwb_linkml.includes.hdmf import (
|
|||
)
|
||||
from nwb_linkml.includes.types import ModelTypeString, NamedImports, NamedString, _get_name
|
||||
|
||||
OPTIONAL_PATTERN = re.compile(r"Optional\[([\w\.]*)\]")
|
||||
OPTIONAL_PATTERN = re.compile(r"Optional\[(.*)\]")
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -52,6 +54,8 @@ class NWBPydanticGenerator(PydanticGenerator):
|
|||
),
|
||||
'object_id: Optional[str] = Field(None, description="Unique UUID for each object")',
|
||||
BASEMODEL_GETITEM,
|
||||
BASEMODEL_COERCE_VALUE,
|
||||
BASEMODEL_COERCE_CHILD,
|
||||
)
|
||||
split: bool = True
|
||||
imports: list[Import] = field(default_factory=lambda: [Import(module="numpy", alias="np")])
|
||||
|
@ -66,6 +70,7 @@ class NWBPydanticGenerator(PydanticGenerator):
|
|||
emit_metadata: bool = True
|
||||
gen_classvars: bool = True
|
||||
gen_slots: bool = True
|
||||
extra_fields: Literal["allow", "forbid", "ignore"] = "allow"
|
||||
|
||||
skip_meta: ClassVar[Tuple[str]] = ("domain_of", "alias")
|
||||
|
||||
|
@ -131,6 +136,8 @@ class NWBPydanticGenerator(PydanticGenerator):
|
|||
"""Customize dynamictable behavior"""
|
||||
cls = AfterGenerateClass.inject_dynamictable(cls)
|
||||
cls = AfterGenerateClass.wrap_dynamictable_columns(cls, sv)
|
||||
cls = AfterGenerateClass.inject_elementidentifiers(cls, sv, self._get_element_import)
|
||||
cls = AfterGenerateClass.strip_vector_data_slots(cls, sv)
|
||||
return cls
|
||||
|
||||
def before_render_template(self, template: PydanticModule, sv: SchemaView) -> PydanticModule:
|
||||
|
@ -204,15 +211,17 @@ class AfterGenerateSlot:
|
|||
# merge injects/imports from the numpydantic array without using the merge method
|
||||
if slot.injected_classes is None:
|
||||
slot.injected_classes = NumpydanticArray.INJECTS.copy()
|
||||
else:
|
||||
else: # pragma: no cover - for completeness, shouldn't happen
|
||||
slot.injected_classes.extend(NumpydanticArray.INJECTS.copy())
|
||||
if isinstance(slot.imports, list):
|
||||
if isinstance(
|
||||
slot.imports, list
|
||||
): # pragma: no cover - for completeness, shouldn't happen
|
||||
slot.imports = (
|
||||
Imports(imports=slot.imports) + NumpydanticArray.IMPORTS.model_copy()
|
||||
)
|
||||
elif isinstance(slot.imports, Imports):
|
||||
slot.imports += NumpydanticArray.IMPORTS.model_copy()
|
||||
else:
|
||||
else: # pragma: no cover - for completeness, shouldn't happen
|
||||
slot.imports = NumpydanticArray.IMPORTS.model_copy()
|
||||
|
||||
return slot
|
||||
|
@ -224,17 +233,20 @@ class AfterGenerateSlot:
|
|||
"""
|
||||
|
||||
if "named" in slot.source.annotations and slot.source.annotations["named"].value:
|
||||
slot.attribute.range = f"Named[{slot.attribute.range}]"
|
||||
|
||||
slot.attribute.range = wrap_preserving_optional(slot.attribute.range, "Named")
|
||||
named_injects = [ModelTypeString, _get_name, NamedString]
|
||||
if slot.injected_classes is None:
|
||||
slot.injected_classes = named_injects
|
||||
else:
|
||||
else: # pragma: no cover - for completeness, shouldn't happen
|
||||
slot.injected_classes.extend([ModelTypeString, _get_name, NamedString])
|
||||
if isinstance(slot.imports, list):
|
||||
if isinstance(
|
||||
slot.imports, list
|
||||
): # pragma: no cover - for completeness, shouldn't happen
|
||||
slot.imports = Imports(imports=slot.imports) + NamedImports
|
||||
elif isinstance(slot.imports, Imports):
|
||||
slot.imports += NamedImports
|
||||
else:
|
||||
else: # pragma: no cover - for completeness, shouldn't happen
|
||||
slot.imports = NamedImports
|
||||
return slot
|
||||
|
||||
|
@ -254,41 +266,57 @@ class AfterGenerateClass:
|
|||
Returns:
|
||||
|
||||
"""
|
||||
if cls.cls.name in "DynamicTable":
|
||||
cls.cls.bases = ["DynamicTableMixin"]
|
||||
if cls.cls.name == "DynamicTable":
|
||||
cls.cls.bases = ["DynamicTableMixin", "ConfiguredBaseModel"]
|
||||
|
||||
if cls.injected_classes is None:
|
||||
if (
|
||||
cls.injected_classes is None
|
||||
): # pragma: no cover - for completeness, shouldn't happen
|
||||
cls.injected_classes = DYNAMIC_TABLE_INJECTS.copy()
|
||||
else:
|
||||
cls.injected_classes.extend(DYNAMIC_TABLE_INJECTS.copy())
|
||||
|
||||
if isinstance(cls.imports, Imports):
|
||||
cls.imports += DYNAMIC_TABLE_IMPORTS
|
||||
elif isinstance(cls.imports, list):
|
||||
elif isinstance(
|
||||
cls.imports, list
|
||||
): # pragma: no cover - for completeness, shouldn't happen
|
||||
cls.imports = Imports(imports=cls.imports) + DYNAMIC_TABLE_IMPORTS
|
||||
else:
|
||||
else: # pragma: no cover - for completeness, shouldn't happen
|
||||
cls.imports = DYNAMIC_TABLE_IMPORTS.model_copy()
|
||||
elif cls.cls.name == "VectorData":
|
||||
cls.cls.bases = ["VectorDataMixin"]
|
||||
cls.cls.bases = ["VectorDataMixin", "ConfiguredBaseModel"]
|
||||
# make ``value`` generic on T
|
||||
if "value" in cls.cls.attributes:
|
||||
cls.cls.attributes["value"].range = "Optional[T]"
|
||||
elif cls.cls.name == "VectorIndex":
|
||||
cls.cls.bases = ["VectorIndexMixin"]
|
||||
cls.cls.bases = ["VectorIndexMixin", "ConfiguredBaseModel"]
|
||||
elif cls.cls.name == "DynamicTableRegion":
|
||||
cls.cls.bases = ["DynamicTableRegionMixin", "VectorData"]
|
||||
cls.cls.bases = ["DynamicTableRegionMixin", "VectorData", "ConfiguredBaseModel"]
|
||||
elif cls.cls.name == "AlignedDynamicTable":
|
||||
cls.cls.bases = ["AlignedDynamicTableMixin", "DynamicTable"]
|
||||
elif cls.cls.name == "ElementIdentifiers":
|
||||
cls.cls.bases = ["ElementIdentifiersMixin", "Data", "ConfiguredBaseModel"]
|
||||
# make ``value`` generic on T
|
||||
if "value" in cls.cls.attributes:
|
||||
cls.cls.attributes["value"].range = "Optional[T]"
|
||||
elif cls.cls.name == "TimeSeriesReferenceVectorData":
|
||||
# in core.nwb.base, so need to inject and import again
|
||||
cls.cls.bases = ["TimeSeriesReferenceVectorDataMixin", "VectorData"]
|
||||
if cls.injected_classes is None:
|
||||
if (
|
||||
cls.injected_classes is None
|
||||
): # pragma: no cover - for completeness, shouldn't happen
|
||||
cls.injected_classes = TSRVD_INJECTS.copy()
|
||||
else:
|
||||
cls.injected_classes.extend(TSRVD_INJECTS.copy())
|
||||
|
||||
if isinstance(cls.imports, Imports):
|
||||
cls.imports += TSRVD_IMPORTS
|
||||
elif isinstance(cls.imports, list):
|
||||
elif isinstance(
|
||||
cls.imports, list
|
||||
): # pragma: no cover - for completeness, shouldn't happen
|
||||
cls.imports = Imports(imports=cls.imports) + TSRVD_IMPORTS
|
||||
else:
|
||||
else: # pragma: no cover - for completeness, shouldn't happen
|
||||
cls.imports = TSRVD_IMPORTS.model_copy()
|
||||
|
||||
return cls
|
||||
|
@ -305,34 +333,60 @@ class AfterGenerateClass:
|
|||
):
|
||||
for an_attr in cls.cls.attributes:
|
||||
if "NDArray" in (slot_range := cls.cls.attributes[an_attr].range):
|
||||
if an_attr.endswith("_index"):
|
||||
cls.cls.attributes[an_attr].range = "".join(
|
||||
["VectorIndex[", slot_range, "]"]
|
||||
)
|
||||
else:
|
||||
cls.cls.attributes[an_attr].range = "".join(
|
||||
["VectorData[", slot_range, "]"]
|
||||
)
|
||||
if an_attr == "id":
|
||||
cls.cls.attributes[an_attr].range = "ElementIdentifiers"
|
||||
return cls
|
||||
|
||||
wrap_cls = "VectorIndex" if an_attr.endswith("_index") else "VectorData"
|
||||
|
||||
cls.cls.attributes[an_attr].range = wrap_preserving_optional(
|
||||
slot_range, wrap_cls
|
||||
)
|
||||
|
||||
return cls
|
||||
|
||||
@staticmethod
|
||||
def inject_elementidentifiers(
|
||||
cls: ClassResult, sv: SchemaView, import_method: Callable[[str], Import]
|
||||
) -> ClassResult:
|
||||
"""
|
||||
Inject ElementIdentifiers into module that define dynamictables -
|
||||
needed to handle ID columns
|
||||
"""
|
||||
if (
|
||||
cls.source.is_a == "DynamicTable"
|
||||
or "DynamicTable" in sv.class_ancestors(cls.source.name)
|
||||
) and sv.schema.name != "hdmf-common.table":
|
||||
imp = import_method("ElementIdentifiers")
|
||||
cls.imports += [imp]
|
||||
return cls
|
||||
|
||||
@staticmethod
|
||||
def strip_vector_data_slots(cls: ClassResult, sv: SchemaView) -> ClassResult:
|
||||
"""
|
||||
Remove spurious ``vector_data`` slots from DynamicTables
|
||||
"""
|
||||
if "vector_data" in cls.cls.attributes:
|
||||
del cls.cls.attributes["vector_data"]
|
||||
return cls
|
||||
|
||||
|
||||
def compile_python(
|
||||
text_or_fn: str, package_path: Path = None, module_name: str = "test"
|
||||
) -> ModuleType:
|
||||
def wrap_preserving_optional(annotation: str, wrap: str) -> str:
|
||||
"""
|
||||
Compile the text or file and return the resulting module
|
||||
@param text_or_fn: Python text or file name that references python file
|
||||
@param package_path: Root package path. If omitted and we've got a python file,
|
||||
the package is the containing
|
||||
directory
|
||||
@return: Compiled module
|
||||
"""
|
||||
python_txt = file_text(text_or_fn)
|
||||
if package_path is None and python_txt != text_or_fn:
|
||||
package_path = Path(text_or_fn)
|
||||
spec = compile(python_txt, "<string>", "exec")
|
||||
module = ModuleType(module_name)
|
||||
Add a wrapping type to a type annotation string,
|
||||
preserving any `Optional[]` annotation, bumping it to the outside
|
||||
|
||||
exec(spec, module.__dict__)
|
||||
sys.modules[module_name] = module
|
||||
return module
|
||||
Examples:
|
||||
|
||||
>>> wrap_preserving_optional('Optional[list[str]]', 'NewType')
|
||||
'Optional[NewType[list[str]]]'
|
||||
|
||||
"""
|
||||
|
||||
is_optional = OPTIONAL_PATTERN.match(annotation)
|
||||
if is_optional:
|
||||
annotation = is_optional.groups()[0]
|
||||
annotation = f"Optional[{wrap}[{annotation}]]"
|
||||
else:
|
||||
annotation = f"{wrap}[{annotation}]"
|
||||
return annotation
|
||||
|
|
|
@ -12,3 +12,38 @@ BASEMODEL_GETITEM = """
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
"""
|
||||
|
||||
BASEMODEL_COERCE_VALUE = """
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
\"\"\"Try to rescue instantiation by using the value field\"\"\"
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
"""
|
||||
|
||||
BASEMODEL_COERCE_CHILD = """
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
\"\"\"Recast parent classes into child classes\"\"\"
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
"""
|
||||
|
|
|
@ -53,8 +53,11 @@ class DynamicTableMixin(BaseModel):
|
|||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"categories",
|
||||
"colnames",
|
||||
"description",
|
||||
"hdf5_path",
|
||||
"object_id",
|
||||
)
|
||||
|
||||
# overridden by subclass but implemented here for testing and typechecking purposes :)
|
||||
|
@ -138,7 +141,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -246,11 +249,14 @@ class DynamicTableMixin(BaseModel):
|
|||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
and model[k] is not None
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
if isinstance(colnames, np.ndarray):
|
||||
colnames = colnames.tolist()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
|
@ -259,6 +265,7 @@ class DynamicTableMixin(BaseModel):
|
|||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
and model[k] is not None
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
|
@ -277,17 +284,25 @@ class DynamicTableMixin(BaseModel):
|
|||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
if key in cls.model_fields or key in cls.NON_COLUMN_FIELDS:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
to_cast = VectorIndex if key.endswith("_index") else VectorData
|
||||
if isinstance(val, dict):
|
||||
model[key] = to_cast(**val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
model[key] = to_cast(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
raise ValidationError.from_exception_data(
|
||||
title=f"field {key} cannot be cast to VectorData from {val}",
|
||||
line_errors=[
|
||||
{
|
||||
"type": "ValueError",
|
||||
"loc": ("DynamicTableMixin", "cast_extra_columns"),
|
||||
"input": val,
|
||||
}
|
||||
],
|
||||
) from e
|
||||
return model
|
||||
|
||||
|
@ -320,9 +335,9 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
lengths = [len(v) for v in self._columns.values() if v is not None] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
"DynamicTable columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
@ -370,7 +385,7 @@ class VectorDataMixin(BaseModel, Generic[T]):
|
|||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
def __init__(self, value: Optional[T] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
@ -571,10 +586,13 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"categories",
|
||||
"colnames",
|
||||
"description",
|
||||
"hdf5_path",
|
||||
"object_id",
|
||||
)
|
||||
|
||||
name: str = "aligned_table"
|
||||
|
@ -604,28 +622,29 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
elif isinstance(item, (int, slice, Iterable, np.int_)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids]
|
||||
ids = pd.Index(data=ids, name="id")
|
||||
tables = []
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
table.index = ids
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
table = pd.DataFrame({category_name: [table]}, index=ids)
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
table = pd.DataFrame({category_name: table}, index=ids)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
|
@ -633,8 +652,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
df = pd.concat(tables, axis=1, keys=self.categories)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -692,14 +710,19 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
categories = model["categories"].copy()
|
||||
if isinstance(categories, np.ndarray):
|
||||
categories = categories.tolist()
|
||||
categories.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_CATEGORY_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
)
|
||||
model["categories"] = categories
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -733,7 +756,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
"AlignedDynamicTableColumns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
@ -828,6 +851,13 @@ class TimeSeriesReferenceVectorDataMixin(VectorDataMixin):
|
|||
)
|
||||
|
||||
|
||||
class ElementIdentifiersMixin(VectorDataMixin):
|
||||
"""
|
||||
Mixin class for ElementIdentifiers - allow treating
|
||||
as generic, and give general indexing methods from VectorData
|
||||
"""
|
||||
|
||||
|
||||
DYNAMIC_TABLE_IMPORTS = Imports(
|
||||
imports=[
|
||||
Import(module="pandas", alias="pd"),
|
||||
|
@ -871,6 +901,7 @@ DYNAMIC_TABLE_INJECTS = [
|
|||
DynamicTableRegionMixin,
|
||||
DynamicTableMixin,
|
||||
AlignedDynamicTableMixin,
|
||||
ElementIdentifiersMixin,
|
||||
]
|
||||
|
||||
TSRVD_IMPORTS = Imports(
|
||||
|
@ -912,3 +943,8 @@ if "pytest" in sys.modules:
|
|||
"""TimeSeriesReferenceVectorData subclass for testing"""
|
||||
|
||||
pass
|
||||
|
||||
class ElementIdentifiers(ElementIdentifiersMixin):
|
||||
"""ElementIdentifiers subclass for testing"""
|
||||
|
||||
pass
|
||||
|
|
|
@ -22,6 +22,7 @@ Other TODO:
|
|||
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
import sys
|
||||
|
@ -31,11 +32,18 @@ from types import ModuleType
|
|||
from typing import TYPE_CHECKING, Dict, List, Optional, Union, overload
|
||||
|
||||
import h5py
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
from numpydantic.interface.hdf5 import H5ArrayPath
|
||||
from pydantic import BaseModel
|
||||
from tqdm import tqdm
|
||||
|
||||
from nwb_linkml.maps.hdf5 import ReadPhases, ReadQueue, flatten_hdf
|
||||
from nwb_linkml.maps.hdf5 import (
|
||||
get_attr_references,
|
||||
get_dataset_references,
|
||||
get_references,
|
||||
resolve_hardlink,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from nwb_linkml.providers.schema import SchemaProvider
|
||||
|
@ -47,6 +55,221 @@ else:
|
|||
from typing_extensions import Never
|
||||
|
||||
|
||||
SKIP_PATTERN = re.compile("(^/specifications.*)|(\.specloc)")
|
||||
"""Nodes to always skip in reading e.g. because they are handled elsewhere"""
|
||||
|
||||
|
||||
def hdf_dependency_graph(h5f: Path | h5py.File | h5py.Group) -> nx.DiGraph:
|
||||
"""
|
||||
Directed dependency graph of dataset and group nodes in an NWBFile such that
|
||||
each node ``n_i`` is connected to node ``n_j`` if
|
||||
|
||||
* ``n_j`` is ``n_i``'s child
|
||||
* ``n_i`` contains a reference to ``n_j``
|
||||
|
||||
Resolve references in
|
||||
|
||||
* Attributes
|
||||
* Dataset columns
|
||||
* Compound dtypes
|
||||
|
||||
Edges are labeled with ``reference`` or ``child`` depending on the type of edge it is,
|
||||
and attributes from the hdf5 file are added as node attributes.
|
||||
|
||||
Args:
|
||||
h5f (:class:`pathlib.Path` | :class:`h5py.File`): NWB file to graph
|
||||
|
||||
Returns:
|
||||
:class:`networkx.DiGraph`
|
||||
"""
|
||||
|
||||
if isinstance(h5f, (Path, str)):
|
||||
h5f = h5py.File(h5f, "r")
|
||||
|
||||
g = nx.DiGraph()
|
||||
|
||||
def _visit_item(name: str, node: h5py.Dataset | h5py.Group) -> None:
|
||||
if SKIP_PATTERN.match(node.name):
|
||||
return
|
||||
# find references in attributes
|
||||
refs = get_references(node)
|
||||
# add edges from references
|
||||
edges = [(node.name, ref) for ref in refs if not SKIP_PATTERN.match(ref)]
|
||||
g.add_edges_from(edges, label="reference")
|
||||
|
||||
# add children, if group
|
||||
if isinstance(node, h5py.Group):
|
||||
children = [
|
||||
resolve_hardlink(child)
|
||||
for child in node.values()
|
||||
if not SKIP_PATTERN.match(child.name)
|
||||
]
|
||||
edges = [(node.name, ref) for ref in children if not SKIP_PATTERN.match(ref)]
|
||||
g.add_edges_from(edges, label="child")
|
||||
|
||||
# ensure node added to graph
|
||||
if len(edges) == 0:
|
||||
g.add_node(node.name)
|
||||
|
||||
# store attrs in node
|
||||
g.nodes[node.name].update(node.attrs)
|
||||
|
||||
# apply to root
|
||||
_visit_item(h5f.name, h5f)
|
||||
|
||||
h5f.visititems(_visit_item)
|
||||
return g
|
||||
|
||||
|
||||
def filter_dependency_graph(g: nx.DiGraph) -> nx.DiGraph:
|
||||
"""
|
||||
Remove nodes from a dependency graph if they
|
||||
|
||||
* have no neurodata type AND
|
||||
* have no outbound edges
|
||||
|
||||
OR
|
||||
|
||||
* are a VectorIndex (which are handled by the dynamictable mixins)
|
||||
"""
|
||||
remove_nodes = []
|
||||
node: str
|
||||
for node in g.nodes:
|
||||
ndtype = g.nodes[node].get("neurodata_type", None)
|
||||
if (ndtype is None and g.out_degree(node) == 0) or SKIP_PATTERN.match(node):
|
||||
remove_nodes.append(node)
|
||||
|
||||
g.remove_nodes_from(remove_nodes)
|
||||
return g
|
||||
|
||||
|
||||
def _load_node(
|
||||
path: str, h5f: h5py.File, provider: "SchemaProvider", context: dict
|
||||
) -> dict | BaseModel:
|
||||
"""
|
||||
Load an individual node in the graph, then removes it from the graph
|
||||
Args:
|
||||
path:
|
||||
g:
|
||||
context:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
obj = h5f.get(path)
|
||||
|
||||
if isinstance(obj, h5py.Dataset):
|
||||
args = _load_dataset(obj, h5f, context)
|
||||
elif isinstance(obj, h5py.Group):
|
||||
args = _load_group(obj, h5f, context)
|
||||
else:
|
||||
raise TypeError(f"Nodes can only be h5py Datasets and Groups, got {obj}")
|
||||
|
||||
if "neurodata_type" in obj.attrs:
|
||||
model = provider.get_class(obj.attrs["namespace"], obj.attrs["neurodata_type"])
|
||||
return model(**args)
|
||||
else:
|
||||
if "name" in args:
|
||||
del args["name"]
|
||||
if "hdf5_path" in args:
|
||||
del args["hdf5_path"]
|
||||
return args
|
||||
|
||||
|
||||
def _load_dataset(
|
||||
dataset: h5py.Dataset, h5f: h5py.File, context: dict
|
||||
) -> Union[dict, str, int, float]:
|
||||
"""
|
||||
Resolves datasets that do not have a ``neurodata_type`` as a dictionary or a scalar.
|
||||
|
||||
If the dataset is a single value without attrs, load it and return as a scalar value.
|
||||
Otherwise return a :class:`.H5ArrayPath` as a reference to the dataset in the `value` key.
|
||||
"""
|
||||
res = {}
|
||||
if dataset.shape == ():
|
||||
val = dataset[()]
|
||||
if isinstance(val, h5py.h5r.Reference):
|
||||
val = context.get(h5f[val].name)
|
||||
# if this is just a scalar value, return it
|
||||
if not dataset.attrs:
|
||||
return val
|
||||
|
||||
res["value"] = val
|
||||
elif len(dataset) > 0 and isinstance(dataset[0], h5py.h5r.Reference):
|
||||
# vector of references
|
||||
res["value"] = [context.get(h5f[ref].name) for ref in dataset[:]]
|
||||
elif len(dataset.dtype) > 1:
|
||||
# compound dataset - check if any of the fields are references
|
||||
for name in dataset.dtype.names:
|
||||
if isinstance(dataset[name][0], h5py.h5r.Reference):
|
||||
res[name] = [context.get(h5f[ref].name) for ref in dataset[name]]
|
||||
else:
|
||||
res[name] = H5ArrayPath(h5f.filename, dataset.name, name)
|
||||
else:
|
||||
res["value"] = H5ArrayPath(h5f.filename, dataset.name)
|
||||
|
||||
res.update(dataset.attrs)
|
||||
if "namespace" in res:
|
||||
del res["namespace"]
|
||||
if "neurodata_type" in res:
|
||||
del res["neurodata_type"]
|
||||
res["name"] = dataset.name.split("/")[-1]
|
||||
res["hdf5_path"] = dataset.name
|
||||
|
||||
# resolve attr references
|
||||
for k, v in res.items():
|
||||
if isinstance(v, h5py.h5r.Reference):
|
||||
ref_path = h5f[v].name
|
||||
if SKIP_PATTERN.match(ref_path):
|
||||
res[k] = ref_path
|
||||
else:
|
||||
res[k] = context[ref_path]
|
||||
|
||||
if len(res) == 1:
|
||||
return res["value"]
|
||||
else:
|
||||
return res
|
||||
|
||||
|
||||
def _load_group(group: h5py.Group, h5f: h5py.File, context: dict) -> dict:
|
||||
"""
|
||||
Load a group!
|
||||
"""
|
||||
res = {}
|
||||
res.update(group.attrs)
|
||||
for child_name, child in group.items():
|
||||
if child.name in context:
|
||||
res[child_name] = context[child.name]
|
||||
elif isinstance(child, h5py.Dataset):
|
||||
res[child_name] = _load_dataset(child, h5f, context)
|
||||
elif isinstance(child, h5py.Group):
|
||||
res[child_name] = _load_group(child, h5f, context)
|
||||
else:
|
||||
raise TypeError(
|
||||
"Can only handle preinstantiated child objects in context, datasets, and group,"
|
||||
f" got {child} for {child_name}"
|
||||
)
|
||||
if "namespace" in res:
|
||||
del res["namespace"]
|
||||
if "neurodata_type" in res:
|
||||
del res["neurodata_type"]
|
||||
name = group.name.split("/")[-1]
|
||||
if name:
|
||||
res["name"] = name
|
||||
res["hdf5_path"] = group.name
|
||||
|
||||
# resolve attr references
|
||||
for k, v in res.items():
|
||||
if isinstance(v, h5py.h5r.Reference):
|
||||
ref_path = h5f[v].name
|
||||
if SKIP_PATTERN.match(ref_path):
|
||||
res[k] = ref_path
|
||||
else:
|
||||
res[k] = context[ref_path]
|
||||
|
||||
return res
|
||||
|
||||
|
||||
class HDF5IO:
|
||||
"""
|
||||
Read (and eventually write) from an NWB HDF5 file.
|
||||
|
@ -106,28 +329,22 @@ class HDF5IO:
|
|||
|
||||
h5f = h5py.File(str(self.path))
|
||||
src = h5f.get(path) if path else h5f
|
||||
graph = hdf_dependency_graph(src)
|
||||
graph = filter_dependency_graph(graph)
|
||||
|
||||
# get all children of selected item
|
||||
if isinstance(src, (h5py.File, h5py.Group)):
|
||||
children = flatten_hdf(src)
|
||||
else:
|
||||
raise NotImplementedError("directly read individual datasets")
|
||||
|
||||
queue = ReadQueue(h5f=self.path, queue=children, provider=provider)
|
||||
|
||||
# Apply initial planning phase of reading
|
||||
queue.apply_phase(ReadPhases.plan)
|
||||
# Read operations gather the data before casting into models
|
||||
queue.apply_phase(ReadPhases.read)
|
||||
# Construction operations actually cast the models
|
||||
# this often needs to run several times as models with dependencies wait for their
|
||||
# dependents to be cast
|
||||
queue.apply_phase(ReadPhases.construct)
|
||||
# topo sort to get read order
|
||||
# TODO: This could be parallelized using `topological_generations`,
|
||||
# but it's not clear what the perf bonus would be because there are many generations
|
||||
# with few items
|
||||
topo_order = list(reversed(list(nx.topological_sort(graph))))
|
||||
context = {}
|
||||
for node in topo_order:
|
||||
res = _load_node(node, h5f, provider, context)
|
||||
context[node] = res
|
||||
|
||||
if path is None:
|
||||
return queue.completed["/"].result
|
||||
else:
|
||||
return queue.completed[path].result
|
||||
path = "/"
|
||||
return context[path]
|
||||
|
||||
def write(self, path: Path) -> Never:
|
||||
"""
|
||||
|
@ -167,7 +384,7 @@ class HDF5IO:
|
|||
"""
|
||||
from nwb_linkml.providers.schema import SchemaProvider
|
||||
|
||||
h5f = h5py.File(str(self.path))
|
||||
h5f = h5py.File(str(self.path), "r")
|
||||
schema = read_specs_as_dicts(h5f.get("specifications"))
|
||||
|
||||
# get versions for each namespace
|
||||
|
@ -269,7 +486,7 @@ def find_references(h5f: h5py.File, path: str) -> List[str]:
|
|||
return references
|
||||
|
||||
|
||||
def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> Path:
|
||||
def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> Path | None:
|
||||
"""
|
||||
Create a truncated HDF5 file where only the first few samples are kept.
|
||||
|
||||
|
@ -285,6 +502,14 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
|||
Returns:
|
||||
:class:`pathlib.Path` path of the truncated file
|
||||
"""
|
||||
if shutil.which("h5repack") is None:
|
||||
warnings.warn(
|
||||
"Truncation requires h5repack to be available, "
|
||||
"or else the truncated files will be no smaller than the originals",
|
||||
stacklevel=2,
|
||||
)
|
||||
return
|
||||
|
||||
target = source.parent / (source.stem + "_truncated.hdf5") if target is None else Path(target)
|
||||
|
||||
source = Path(source)
|
||||
|
@ -300,17 +525,34 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
|||
os.chmod(target, 0o774)
|
||||
|
||||
to_resize = []
|
||||
attr_refs = {}
|
||||
dataset_refs = {}
|
||||
|
||||
def _need_resizing(name: str, obj: h5py.Dataset | h5py.Group) -> None:
|
||||
if isinstance(obj, h5py.Dataset) and obj.size > n:
|
||||
to_resize.append(name)
|
||||
|
||||
print("Resizing datasets...")
|
||||
def _find_attr_refs(name: str, obj: h5py.Dataset | h5py.Group) -> None:
|
||||
"""Find all references in object attrs"""
|
||||
refs = get_attr_references(obj)
|
||||
if refs:
|
||||
attr_refs[name] = refs
|
||||
|
||||
def _find_dataset_refs(name: str, obj: h5py.Dataset | h5py.Group) -> None:
|
||||
"""Find all references in datasets themselves"""
|
||||
refs = get_dataset_references(obj)
|
||||
if refs:
|
||||
dataset_refs[name] = refs
|
||||
|
||||
# first we get the items that need to be resized and then resize them below
|
||||
# problems with writing to the file from within the visititems call
|
||||
print("Planning resize...")
|
||||
h5f_target = h5py.File(str(target), "r+")
|
||||
h5f_target.visititems(_need_resizing)
|
||||
h5f_target.visititems(_find_attr_refs)
|
||||
h5f_target.visititems(_find_dataset_refs)
|
||||
|
||||
print("Resizing datasets...")
|
||||
for resize in to_resize:
|
||||
obj = h5f_target.get(resize)
|
||||
try:
|
||||
|
@ -320,10 +562,14 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
|||
# so we have to copy and create a new dataset
|
||||
tmp_name = obj.name + "__tmp"
|
||||
original_name = obj.name
|
||||
|
||||
obj.parent.move(obj.name, tmp_name)
|
||||
old_obj = obj.parent.get(tmp_name)
|
||||
new_obj = obj.parent.create_dataset(original_name, data=old_obj[0:n])
|
||||
new_obj = obj.parent.create_dataset(
|
||||
original_name, data=old_obj[0:n], dtype=old_obj.dtype
|
||||
)
|
||||
for k, v in old_obj.attrs.items():
|
||||
|
||||
new_obj.attrs[k] = v
|
||||
del new_obj.parent[tmp_name]
|
||||
|
||||
|
@ -331,16 +577,18 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
|||
h5f_target.close()
|
||||
|
||||
# use h5repack to actually remove the items from the dataset
|
||||
if shutil.which("h5repack") is None:
|
||||
warnings.warn(
|
||||
"Truncated file made, but since h5repack not found in path, file won't be any smaller",
|
||||
stacklevel=2,
|
||||
)
|
||||
return target
|
||||
|
||||
print("Repacking hdf5...")
|
||||
res = subprocess.run(
|
||||
["h5repack", "-f", "GZIP=9", str(target), str(target_tmp)], capture_output=True
|
||||
[
|
||||
"h5repack",
|
||||
"--verbose=2",
|
||||
"--enable-error-stack",
|
||||
"-f",
|
||||
"GZIP=9",
|
||||
str(target),
|
||||
str(target_tmp),
|
||||
],
|
||||
capture_output=True,
|
||||
)
|
||||
if res.returncode != 0:
|
||||
warnings.warn(f"h5repack did not return 0: {res.stderr} {res.stdout}", stacklevel=2)
|
||||
|
@ -348,6 +596,36 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
|||
target_tmp.unlink()
|
||||
return target
|
||||
|
||||
h5f_target = h5py.File(str(target_tmp), "r+")
|
||||
|
||||
# recreate references after repacking, because repacking ruins them if they
|
||||
# are in a compound dtype
|
||||
for obj_name, obj_refs in attr_refs.items():
|
||||
obj = h5f_target.get(obj_name)
|
||||
for attr_name, ref_target in obj_refs.items():
|
||||
ref_target = h5f_target.get(ref_target)
|
||||
obj.attrs[attr_name] = ref_target.ref
|
||||
|
||||
for obj_name, obj_refs in dataset_refs.items():
|
||||
obj = h5f_target.get(obj_name)
|
||||
if isinstance(obj_refs, list):
|
||||
if len(obj_refs) == 1:
|
||||
ref_target = h5f_target.get(obj_refs[0])
|
||||
obj[()] = ref_target.ref
|
||||
else:
|
||||
targets = [h5f_target.get(ref).ref for ref in obj_refs[:n]]
|
||||
obj[:] = targets
|
||||
else:
|
||||
# dict for a compound dataset
|
||||
for col_name, column_refs in obj_refs.items():
|
||||
targets = [h5f_target.get(ref).ref for ref in column_refs[:n]]
|
||||
data = obj[:]
|
||||
data[col_name] = targets
|
||||
obj[:] = data
|
||||
|
||||
h5f_target.flush()
|
||||
h5f_target.close()
|
||||
|
||||
target.unlink()
|
||||
target_tmp.rename(target)
|
||||
|
||||
|
|
|
@ -131,6 +131,8 @@ def load_namespace_adapter(
|
|||
else:
|
||||
adapter = NamespacesAdapter(namespaces=namespaces, schemas=sch)
|
||||
|
||||
adapter.populate_imports()
|
||||
|
||||
return adapter
|
||||
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ Dtype mappings
|
|||
"""
|
||||
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
@ -160,14 +160,28 @@ def handle_dtype(dtype: DTypeType | None) -> str:
|
|||
elif isinstance(dtype, FlatDtype):
|
||||
return dtype.value
|
||||
elif isinstance(dtype, list) and isinstance(dtype[0], CompoundDtype):
|
||||
# there is precisely one class that uses compound dtypes:
|
||||
# TimeSeriesReferenceVectorData
|
||||
# compoundDtypes are able to define a ragged table according to the schema
|
||||
# but are used in this single case equivalently to attributes.
|
||||
# so we'll... uh... treat them as slots.
|
||||
# TODO
|
||||
# Compound Dtypes are handled by the MapCompoundDtype dataset map,
|
||||
# but this function is also used within ``check`` methods, so we should always
|
||||
# return something from it rather than raise
|
||||
return "AnyType"
|
||||
|
||||
else:
|
||||
# flat dtype
|
||||
return dtype
|
||||
|
||||
|
||||
def inlined(dtype: DTypeType | None) -> Optional[bool]:
|
||||
"""
|
||||
Check if a slot should be inlined based on its dtype
|
||||
|
||||
for now that is equivalent to checking whether that dtype is another a reference dtype,
|
||||
but the function remains semantically reserved for answering this question w.r.t. dtype.
|
||||
|
||||
Returns ``None`` if not inlined to not clutter generated models with unnecessary props
|
||||
"""
|
||||
return (
|
||||
True
|
||||
if isinstance(dtype, ReferenceDtype)
|
||||
or (isinstance(dtype, CompoundDtype) and isinstance(dtype.dtype, ReferenceDtype))
|
||||
else None
|
||||
)
|
||||
|
|
|
@ -5,832 +5,47 @@ We have sort of diverged from the initial idea of a generalized map as in :class
|
|||
so we will make our own mapping class here and re-evaluate whether they should be unified later
|
||||
"""
|
||||
|
||||
# FIXME: return and document whatever is left of this godforsaken module after refactoring
|
||||
# ruff: noqa: D102
|
||||
# ruff: noqa: D101
|
||||
|
||||
import contextlib
|
||||
import datetime
|
||||
import inspect
|
||||
import sys
|
||||
from abc import abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple, Type, Union
|
||||
from typing import List, Union
|
||||
|
||||
import h5py
|
||||
from numpydantic.interface.hdf5 import H5ArrayPath
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from nwb_linkml.annotations import unwrap_optional
|
||||
from nwb_linkml.maps import Map
|
||||
from nwb_linkml.types.hdf5 import HDF5_Path
|
||||
|
||||
if sys.version_info.minor >= 11:
|
||||
from enum import StrEnum
|
||||
else:
|
||||
from enum import Enum
|
||||
|
||||
class StrEnum(str, Enum):
|
||||
"""StrEnum-ish class for python 3.10"""
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from nwb_linkml.providers.schema import SchemaProvider
|
||||
def get_attr_references(obj: h5py.Dataset | h5py.Group) -> dict[str, str]:
|
||||
"""
|
||||
Get any references in object attributes
|
||||
"""
|
||||
refs = {
|
||||
k: obj.file.get(ref).name
|
||||
for k, ref in obj.attrs.items()
|
||||
if isinstance(ref, h5py.h5r.Reference)
|
||||
}
|
||||
return refs
|
||||
|
||||
|
||||
class ReadPhases(StrEnum):
|
||||
plan = "plan"
|
||||
"""Before reading starts, building an index of objects to read"""
|
||||
read = "read"
|
||||
"""Main reading operation"""
|
||||
construct = "construct"
|
||||
"""After reading, casting the results of the read into their models"""
|
||||
|
||||
|
||||
class H5SourceItem(BaseModel):
|
||||
def get_dataset_references(obj: h5py.Dataset | h5py.Group) -> list[str] | dict[str, str]:
|
||||
"""
|
||||
Descriptor of items for each element when :func:`.flatten_hdf` flattens an hdf5 file.
|
||||
|
||||
Consumed by :class:`.HDF5Map` classes, orchestrated by :class:`.ReadQueue`
|
||||
"""
|
||||
|
||||
path: str
|
||||
"""Absolute hdf5 path of element"""
|
||||
h5f_path: str
|
||||
"""Path to the source hdf5 file"""
|
||||
leaf: bool
|
||||
"""
|
||||
If ``True``, this item has no children
|
||||
(and thus we should start instantiating it before ascending to parent classes)
|
||||
"""
|
||||
h5_type: Literal["group", "dataset"]
|
||||
"""What kind of hdf5 element this is"""
|
||||
depends: List[str] = Field(default_factory=list)
|
||||
"""
|
||||
Paths of other source items that this item depends on before it can be instantiated.
|
||||
eg. from softlinks
|
||||
"""
|
||||
attrs: dict = Field(default_factory=dict)
|
||||
"""Any static attrs that can be had from the element"""
|
||||
namespace: Optional[str] = None
|
||||
"""Optional: The namespace that the neurodata type belongs to"""
|
||||
neurodata_type: Optional[str] = None
|
||||
"""Optional: the neurodata type for this dataset or group"""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
@property
|
||||
def parts(self) -> List[str]:
|
||||
"""path split by /"""
|
||||
return self.path.split("/")
|
||||
|
||||
|
||||
class H5ReadResult(BaseModel):
|
||||
"""
|
||||
Result returned by each of our mapping operations.
|
||||
|
||||
Also used as the source for operations in the ``construct`` :class:`.ReadPhases`
|
||||
"""
|
||||
|
||||
path: str
|
||||
"""absolute hdf5 path of element"""
|
||||
source: Union[H5SourceItem, "H5ReadResult"]
|
||||
"""
|
||||
Source that this result is based on.
|
||||
The map can modify this item, so the container should update the source
|
||||
queue on each pass
|
||||
"""
|
||||
completed: bool = False
|
||||
"""
|
||||
Was this item completed by this map step? False for cases where eg.
|
||||
we still have dependencies that need to be completed before this one
|
||||
"""
|
||||
result: Optional[dict | str | int | float | BaseModel] = None
|
||||
"""
|
||||
If completed, built result. A dict that can be instantiated into the model.
|
||||
If completed is True and result is None, then remove this object
|
||||
"""
|
||||
model: Optional[Type[BaseModel]] = None
|
||||
"""
|
||||
The model that this item should be cast into
|
||||
"""
|
||||
completes: List[HDF5_Path] = Field(default_factory=list)
|
||||
"""
|
||||
If this result completes any other fields, we remove them from the build queue.
|
||||
"""
|
||||
namespace: Optional[str] = None
|
||||
"""
|
||||
Optional: the namespace of the neurodata type for this object
|
||||
"""
|
||||
neurodata_type: Optional[str] = None
|
||||
"""
|
||||
Optional: The neurodata type to use for this object
|
||||
"""
|
||||
applied: List[str] = Field(default_factory=list)
|
||||
"""
|
||||
Which map operations were applied to this item
|
||||
"""
|
||||
errors: List[str] = Field(default_factory=list)
|
||||
"""
|
||||
Problems that occurred during resolution
|
||||
"""
|
||||
depends: List[HDF5_Path] = Field(default_factory=list)
|
||||
"""
|
||||
Other items that the final resolution of this item depends on
|
||||
"""
|
||||
|
||||
|
||||
FlatH5 = Dict[str, H5SourceItem]
|
||||
|
||||
|
||||
class HDF5Map(Map):
|
||||
phase: ReadPhases
|
||||
priority: int = 0
|
||||
"""
|
||||
Within a phase, sort mapping operations from low to high priority
|
||||
(maybe this should be renamed because highest priority last doesn't make a lot of sense)
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def check(
|
||||
cls,
|
||||
src: H5SourceItem | H5ReadResult,
|
||||
provider: "SchemaProvider",
|
||||
completed: Dict[str, H5ReadResult],
|
||||
) -> bool:
|
||||
"""Check if this map applies to the given item to read"""
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def apply(
|
||||
cls,
|
||||
src: H5SourceItem | H5ReadResult,
|
||||
provider: "SchemaProvider",
|
||||
completed: Dict[str, H5ReadResult],
|
||||
) -> H5ReadResult:
|
||||
"""Actually apply the map!"""
|
||||
|
||||
|
||||
# --------------------------------------------------
|
||||
# Planning maps
|
||||
# --------------------------------------------------
|
||||
|
||||
|
||||
def check_empty(obj: h5py.Group) -> bool:
|
||||
"""
|
||||
Check if a group has no attrs or children OR has no attrs and all its children
|
||||
also have no attrs and no children
|
||||
|
||||
Returns:
|
||||
bool
|
||||
Get references in datasets
|
||||
"""
|
||||
refs = []
|
||||
# For datasets, apply checks depending on shape of data.
|
||||
if isinstance(obj, h5py.Dataset):
|
||||
return False
|
||||
|
||||
# check if we are empty
|
||||
no_attrs = False
|
||||
if len(obj.attrs) == 0:
|
||||
no_attrs = True
|
||||
|
||||
no_children = False
|
||||
if len(obj.keys()) == 0:
|
||||
no_children = True
|
||||
|
||||
# check if immediate children are empty
|
||||
# handles empty groups of empty groups
|
||||
children_empty = False
|
||||
if all(
|
||||
[
|
||||
isinstance(item, h5py.Group) and len(item.keys()) == 0 and len(item.attrs) == 0
|
||||
for item in obj.values()
|
||||
]
|
||||
):
|
||||
children_empty = True
|
||||
|
||||
# if we have no attrs and we are a leaf OR our children are empty, remove us
|
||||
return bool(no_attrs and (no_children or children_empty))
|
||||
|
||||
|
||||
class PruneEmpty(HDF5Map):
|
||||
"""Remove groups with no attrs"""
|
||||
|
||||
phase = ReadPhases.plan
|
||||
|
||||
@classmethod
|
||||
def check(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
if src.h5_type == "group":
|
||||
with h5py.File(src.h5f_path, "r") as h5f:
|
||||
obj = h5f.get(src.path)
|
||||
return check_empty(obj)
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> H5ReadResult:
|
||||
return H5ReadResult.model_construct(path=src.path, source=src, completed=True)
|
||||
|
||||
|
||||
#
|
||||
# class ResolveDynamicTable(HDF5Map):
|
||||
# """
|
||||
# Handle loading a dynamic table!
|
||||
#
|
||||
# Dynamic tables are sort of odd in that their models don't include their fields
|
||||
# (except as a list of strings in ``colnames`` ),
|
||||
# so we need to create a new model that includes fields for each column,
|
||||
# and then we include the datasets as :class:`~numpydantic.interface.hdf5.H5ArrayPath`
|
||||
# objects which lazy load the arrays in a thread/process safe way.
|
||||
#
|
||||
# This map also resolves the child elements,
|
||||
# indicating so by the ``completes`` field in the :class:`.ReadResult`
|
||||
# """
|
||||
#
|
||||
# phase = ReadPhases.read
|
||||
# priority = 1
|
||||
#
|
||||
# @classmethod
|
||||
# def check(
|
||||
# cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
# ) -> bool:
|
||||
# if src.h5_type == "dataset":
|
||||
# return False
|
||||
# if "neurodata_type" in src.attrs:
|
||||
# if src.attrs["neurodata_type"] == "DynamicTable":
|
||||
# return True
|
||||
# # otherwise, see if it's a subclass
|
||||
# model = provider.get_class(src.attrs["namespace"], src.attrs["neurodata_type"])
|
||||
# # just inspect the MRO as strings rather than trying to check subclasses because
|
||||
# # we might replace DynamicTable in the future, and there isn't a stable DynamicTable
|
||||
# # class to inherit from anyway because of the whole multiple versions thing
|
||||
# parents = [parent.__name__ for parent in model.__mro__]
|
||||
# return "DynamicTable" in parents
|
||||
# else:
|
||||
# return False
|
||||
#
|
||||
# @classmethod
|
||||
# def apply(
|
||||
# cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
# ) -> H5ReadResult:
|
||||
# with h5py.File(src.h5f_path, "r") as h5f:
|
||||
# obj = h5f.get(src.path)
|
||||
#
|
||||
# # make a populated model :)
|
||||
# base_model = provider.get_class(src.namespace, src.neurodata_type)
|
||||
# model = dynamictable_to_model(obj, base=base_model)
|
||||
#
|
||||
# completes = [HDF5_Path(child.name) for child in obj.values()]
|
||||
#
|
||||
# return H5ReadResult(
|
||||
# path=src.path,
|
||||
# source=src,
|
||||
# result=model,
|
||||
# completes=completes,
|
||||
# completed=True,
|
||||
# applied=["ResolveDynamicTable"],
|
||||
# )
|
||||
|
||||
|
||||
class ResolveModelGroup(HDF5Map):
|
||||
"""
|
||||
HDF5 Groups that have a model, as indicated by ``neurodata_type`` in their attrs.
|
||||
We use the model to determine what fields we should get, and then stash references
|
||||
to the children to process later as :class:`.HDF5_Path`
|
||||
|
||||
**Special Case:** Some groups like ``ProcessingGroup`` and others that have an arbitrary
|
||||
number of named children have a special ``children`` field that is a dictionary mapping
|
||||
names to the objects themselves.
|
||||
|
||||
So for example, this:
|
||||
|
||||
/processing/
|
||||
eye_tracking/
|
||||
cr_ellipse_fits/
|
||||
center_x
|
||||
center_y
|
||||
...
|
||||
eye_ellipse_fits/
|
||||
...
|
||||
pupil_ellipse_fits/
|
||||
...
|
||||
eye_tracking_rig_metadata/
|
||||
...
|
||||
|
||||
would pack the ``eye_tracking`` group (a ``ProcessingModule`` ) as:
|
||||
|
||||
{
|
||||
"name": "eye_tracking",
|
||||
"children": {
|
||||
"cr_ellipse_fits": HDF5_Path('/processing/eye_tracking/cr_ellipse_fits'),
|
||||
"eye_ellipse_fits" : HDF5_Path('/processing/eye_tracking/eye_ellipse_fits'),
|
||||
...
|
||||
}
|
||||
}
|
||||
|
||||
We will do some nice things in the model metaclass to make it possible to access the children
|
||||
like ``nwbfile.processing.cr_ellipse_fits.center_x``
|
||||
rather than having to switch between indexing and attribute access :)
|
||||
"""
|
||||
|
||||
phase = ReadPhases.read
|
||||
priority = 10 # do this generally last
|
||||
|
||||
@classmethod
|
||||
def check(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
return bool("neurodata_type" in src.attrs and src.h5_type == "group")
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> H5ReadResult:
|
||||
model = provider.get_class(src.namespace, src.neurodata_type)
|
||||
res = {}
|
||||
depends = []
|
||||
with h5py.File(src.h5f_path, "r") as h5f:
|
||||
obj = h5f.get(src.path)
|
||||
for key in model.model_fields:
|
||||
if key == "children":
|
||||
res[key] = {name: resolve_hardlink(child) for name, child in obj.items()}
|
||||
depends.extend([resolve_hardlink(child) for child in obj.values()])
|
||||
elif key in obj.attrs:
|
||||
res[key] = obj.attrs[key]
|
||||
continue
|
||||
elif key in obj:
|
||||
# make sure it's not empty
|
||||
if check_empty(obj[key]):
|
||||
continue
|
||||
# stash a reference to this, we'll compile it at the end
|
||||
depends.append(resolve_hardlink(obj[key]))
|
||||
res[key] = resolve_hardlink(obj[key])
|
||||
|
||||
res["hdf5_path"] = src.path
|
||||
res["name"] = src.parts[-1]
|
||||
return H5ReadResult(
|
||||
path=src.path,
|
||||
source=src,
|
||||
completed=True,
|
||||
result=res,
|
||||
model=model,
|
||||
namespace=src.namespace,
|
||||
neurodata_type=src.neurodata_type,
|
||||
applied=["ResolveModelGroup"],
|
||||
depends=depends,
|
||||
)
|
||||
|
||||
|
||||
class ResolveDatasetAsDict(HDF5Map):
|
||||
"""
|
||||
Resolve datasets that do not have a ``neurodata_type`` of their own as a dictionary
|
||||
that will be packaged into a model in the next step. Grabs the array in an
|
||||
:class:`~numpydantic.interface.hdf5.H5ArrayPath`
|
||||
under an ``array`` key, and then grabs any additional ``attrs`` as well.
|
||||
|
||||
Mutually exclusive with :class:`.ResolveScalars` - this only applies to datasets that are larger
|
||||
than a single entry.
|
||||
"""
|
||||
|
||||
phase = ReadPhases.read
|
||||
priority = 11
|
||||
|
||||
@classmethod
|
||||
def check(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
if src.h5_type == "dataset" and "neurodata_type" not in src.attrs:
|
||||
with h5py.File(src.h5f_path, "r") as h5f:
|
||||
obj = h5f.get(src.path)
|
||||
return obj.shape != ()
|
||||
else:
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> H5ReadResult:
|
||||
|
||||
res = {
|
||||
"array": H5ArrayPath(file=src.h5f_path, path=src.path),
|
||||
"hdf5_path": src.path,
|
||||
"name": src.parts[-1],
|
||||
**src.attrs,
|
||||
}
|
||||
return H5ReadResult(
|
||||
path=src.path, source=src, completed=True, result=res, applied=["ResolveDatasetAsDict"]
|
||||
)
|
||||
|
||||
|
||||
class ResolveScalars(HDF5Map):
|
||||
phase = ReadPhases.read
|
||||
priority = 11 # catchall
|
||||
|
||||
@classmethod
|
||||
def check(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
if src.h5_type == "dataset" and "neurodata_type" not in src.attrs:
|
||||
with h5py.File(src.h5f_path, "r") as h5f:
|
||||
obj = h5f.get(src.path)
|
||||
return obj.shape == ()
|
||||
else:
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> H5ReadResult:
|
||||
with h5py.File(src.h5f_path, "r") as h5f:
|
||||
obj = h5f.get(src.path)
|
||||
res = obj[()]
|
||||
return H5ReadResult(
|
||||
path=src.path, source=src, completed=True, result=res, applied=["ResolveScalars"]
|
||||
)
|
||||
|
||||
|
||||
class ResolveContainerGroups(HDF5Map):
|
||||
"""
|
||||
Groups like ``/acquisition``` and others that have no ``neurodata_type``
|
||||
(and thus no model) are returned as a dictionary with :class:`.HDF5_Path` references to
|
||||
the children they contain
|
||||
"""
|
||||
|
||||
phase = ReadPhases.read
|
||||
priority = 9
|
||||
|
||||
@classmethod
|
||||
def check(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
if src.h5_type == "group" and "neurodata_type" not in src.attrs and len(src.attrs) == 0:
|
||||
with h5py.File(src.h5f_path, "r") as h5f:
|
||||
obj = h5f.get(src.path)
|
||||
return len(obj.keys()) > 0
|
||||
else:
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
cls, src: H5SourceItem, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> H5ReadResult:
|
||||
"""Simple, just return a dict with references to its children"""
|
||||
depends = []
|
||||
with h5py.File(src.h5f_path, "r") as h5f:
|
||||
obj = h5f.get(src.path)
|
||||
children = {}
|
||||
for k, v in obj.items():
|
||||
children[k] = HDF5_Path(v.name)
|
||||
depends.append(HDF5_Path(v.name))
|
||||
|
||||
# res = {
|
||||
# 'name': src.parts[-1],
|
||||
# 'hdf5_path': src.path,
|
||||
# **children
|
||||
# }
|
||||
|
||||
return H5ReadResult(
|
||||
path=src.path,
|
||||
source=src,
|
||||
completed=True,
|
||||
result=children,
|
||||
depends=depends,
|
||||
applied=["ResolveContainerGroups"],
|
||||
)
|
||||
|
||||
|
||||
# --------------------------------------------------
|
||||
# Completion Steps
|
||||
# --------------------------------------------------
|
||||
|
||||
|
||||
class CompletePassThrough(HDF5Map):
|
||||
"""
|
||||
Passthrough map for the construction phase for models that don't need any more work done
|
||||
|
||||
- :class:`.ResolveDynamicTable`
|
||||
- :class:`.ResolveDatasetAsDict`
|
||||
- :class:`.ResolveScalars`
|
||||
"""
|
||||
|
||||
phase = ReadPhases.construct
|
||||
priority = 1
|
||||
|
||||
@classmethod
|
||||
def check(
|
||||
cls, src: H5ReadResult, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
passthrough_ops = ("ResolveDynamicTable", "ResolveDatasetAsDict", "ResolveScalars")
|
||||
|
||||
return any(hasattr(src, "applied") and op in src.applied for op in passthrough_ops)
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
cls, src: H5ReadResult, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> H5ReadResult:
|
||||
return src
|
||||
|
||||
|
||||
class CompleteContainerGroups(HDF5Map):
|
||||
"""
|
||||
Complete container groups (usually top-level groups like /acquisition)
|
||||
that do not have a ndueodata type of their own by resolving them as dictionaries
|
||||
of values (that will then be given to their parent model)
|
||||
|
||||
"""
|
||||
|
||||
phase = ReadPhases.construct
|
||||
priority = 3
|
||||
|
||||
@classmethod
|
||||
def check(
|
||||
cls, src: H5ReadResult, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
return (
|
||||
src.model is None
|
||||
and src.neurodata_type is None
|
||||
and src.source.h5_type == "group"
|
||||
and all([depend in completed for depend in src.depends])
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
cls, src: H5ReadResult, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> H5ReadResult:
|
||||
res, errors, completes = resolve_references(src.result, completed)
|
||||
|
||||
return H5ReadResult(
|
||||
result=res,
|
||||
errors=errors,
|
||||
completes=completes,
|
||||
**src.model_dump(exclude={"result", "errors", "completes"}),
|
||||
)
|
||||
|
||||
|
||||
class CompleteModelGroups(HDF5Map):
|
||||
phase = ReadPhases.construct
|
||||
priority = 4
|
||||
|
||||
@classmethod
|
||||
def check(
|
||||
cls, src: H5ReadResult, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
return (
|
||||
src.model is not None
|
||||
and src.source.h5_type == "group"
|
||||
and src.neurodata_type != "NWBFile"
|
||||
and all([depend in completed for depend in src.depends])
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
cls, src: H5ReadResult, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> H5ReadResult:
|
||||
# gather any results that were left for completion elsewhere
|
||||
# first get all already-completed items
|
||||
res = {k: v for k, v in src.result.items() if not isinstance(v, HDF5_Path)}
|
||||
unpacked_results, errors, completes = resolve_references(src.result, completed)
|
||||
res.update(unpacked_results)
|
||||
|
||||
# now that we have the model in hand, we can solve any datasets that had an array
|
||||
# but whose attributes are fixed (and thus should just be an array, rather than a subclass)
|
||||
for k, v in src.model.model_fields.items():
|
||||
annotation = unwrap_optional(v.annotation)
|
||||
if (
|
||||
inspect.isclass(annotation)
|
||||
and not issubclass(annotation, BaseModel)
|
||||
and isinstance(res, dict)
|
||||
and k in res
|
||||
and isinstance(res[k], dict)
|
||||
and "array" in res[k]
|
||||
):
|
||||
res[k] = res[k]["array"]
|
||||
|
||||
instance = src.model(**res)
|
||||
return H5ReadResult(
|
||||
path=src.path,
|
||||
source=src,
|
||||
result=instance,
|
||||
model=src.model,
|
||||
completed=True,
|
||||
completes=completes,
|
||||
neurodata_type=src.neurodata_type,
|
||||
namespace=src.namespace,
|
||||
applied=src.applied + ["CompleteModelGroups"],
|
||||
errors=errors,
|
||||
)
|
||||
|
||||
|
||||
class CompleteNWBFile(HDF5Map):
|
||||
"""
|
||||
The Top-Level NWBFile class is so special cased we just make its own completion special case!
|
||||
|
||||
.. todo::
|
||||
|
||||
This is truly hideous, just meant as a way to get to the finish line on a late night,
|
||||
will be cleaned up later
|
||||
|
||||
"""
|
||||
|
||||
phase = ReadPhases.construct
|
||||
priority = 11
|
||||
|
||||
@classmethod
|
||||
def check(
|
||||
cls, src: H5ReadResult, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
return src.neurodata_type == "NWBFile" and all(
|
||||
[depend in completed for depend in src.depends]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
cls, src: H5ReadResult, provider: "SchemaProvider", completed: Dict[str, H5ReadResult]
|
||||
) -> H5ReadResult:
|
||||
res = {k: v for k, v in src.result.items() if not isinstance(v, HDF5_Path)}
|
||||
unpacked_results, errors, completes = resolve_references(src.result, completed)
|
||||
res.update(unpacked_results)
|
||||
|
||||
res["name"] = "root"
|
||||
res["file_create_date"] = [
|
||||
datetime.datetime.fromisoformat(ts.decode("utf-8"))
|
||||
for ts in res["file_create_date"]["array"][:]
|
||||
]
|
||||
if "stimulus" not in res:
|
||||
res["stimulus"] = provider.get_class("core", "NWBFileStimulus")()
|
||||
electrode_groups = []
|
||||
egroup_keys = list(res["general"].get("extracellular_ephys", {}).keys())
|
||||
egroup_dict = {}
|
||||
for k in egroup_keys:
|
||||
if k != "electrodes":
|
||||
egroup = res["general"]["extracellular_ephys"][k]
|
||||
electrode_groups.append(egroup)
|
||||
egroup_dict[egroup.hdf5_path] = egroup
|
||||
del res["general"]["extracellular_ephys"][k]
|
||||
if len(electrode_groups) > 0:
|
||||
res["general"]["extracellular_ephys"]["electrode_group"] = electrode_groups
|
||||
trode_type = provider.get_class("core", "NWBFileGeneralExtracellularEphysElectrodes")
|
||||
# anmro = list(type(res['general']['extracellular_ephys']['electrodes']).__mro__)
|
||||
# anmro.insert(1, trode_type)
|
||||
trodes_original = res["general"]["extracellular_ephys"]["electrodes"]
|
||||
trodes = trode_type.model_construct(trodes_original.model_dump())
|
||||
res["general"]["extracellular_ephys"]["electrodes"] = trodes
|
||||
|
||||
instance = src.model(**res)
|
||||
return H5ReadResult(
|
||||
path=src.path,
|
||||
source=src,
|
||||
result=instance,
|
||||
model=src.model,
|
||||
completed=True,
|
||||
completes=completes,
|
||||
neurodata_type=src.neurodata_type,
|
||||
namespace=src.namespace,
|
||||
applied=src.applied + ["CompleteModelGroups"],
|
||||
errors=errors,
|
||||
)
|
||||
|
||||
|
||||
class ReadQueue(BaseModel):
|
||||
"""Container model to store items as they are built"""
|
||||
|
||||
h5f: Path = Field(
|
||||
description=(
|
||||
"Path to the source hdf5 file used when resolving the queue! "
|
||||
"Each translation step should handle opening and closing the file, "
|
||||
"rather than passing a handle around"
|
||||
)
|
||||
)
|
||||
provider: "SchemaProvider" = Field(
|
||||
description="SchemaProvider used by each of the items in the read queue"
|
||||
)
|
||||
queue: Dict[str, H5SourceItem | H5ReadResult] = Field(
|
||||
default_factory=dict,
|
||||
description="Items left to be instantiated, keyed by hdf5 path",
|
||||
)
|
||||
completed: Dict[str, H5ReadResult] = Field(
|
||||
default_factory=dict,
|
||||
description="Items that have already been instantiated, keyed by hdf5 path",
|
||||
)
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
phases_completed: List[ReadPhases] = Field(
|
||||
default_factory=list, description="Phases that have already been completed"
|
||||
)
|
||||
|
||||
def apply_phase(self, phase: ReadPhases, max_passes: int = 5) -> None:
|
||||
phase_maps = [m for m in HDF5Map.__subclasses__() if m.phase == phase]
|
||||
phase_maps = sorted(phase_maps, key=lambda x: x.priority)
|
||||
|
||||
results = []
|
||||
|
||||
# TODO: Thread/multiprocess this
|
||||
for item in self.queue.values():
|
||||
for op in phase_maps:
|
||||
if op.check(item, self.provider, self.completed):
|
||||
# Formerly there was an "exclusive" property in the maps which let
|
||||
# potentially multiple operations be applied per stage,
|
||||
# except if an operation was `exclusive` which would break
|
||||
# iteration over the operations.
|
||||
# This was removed because it was badly implemented,
|
||||
# but if there is ever a need to do that,
|
||||
# then we would need to decide what to do with the multiple results.
|
||||
results.append(op.apply(item, self.provider, self.completed))
|
||||
break # out of inner iteration
|
||||
|
||||
# remake the source queue and save results
|
||||
completes = []
|
||||
for res in results:
|
||||
# remove the original item
|
||||
del self.queue[res.path]
|
||||
if res.completed:
|
||||
# if the item has been finished and there is some result, add it to the results
|
||||
if res.result is not None:
|
||||
self.completed[res.path] = res
|
||||
# otherwise if the item has been completed and there was no result,
|
||||
# just drop it.
|
||||
|
||||
# if we have completed other things, delete them from the queue
|
||||
completes.extend(res.completes)
|
||||
|
||||
else:
|
||||
# if we didn't complete the item (eg. we found we needed more dependencies),
|
||||
# add the updated source to the queue again
|
||||
if phase != ReadPhases.construct:
|
||||
self.queue[res.path] = res.source
|
||||
else:
|
||||
self.queue[res.path] = res
|
||||
|
||||
# delete the ones that were already completed but might have been
|
||||
# incorrectly added back in the pile
|
||||
for c in completes:
|
||||
with contextlib.suppress(KeyError):
|
||||
del self.queue[c]
|
||||
|
||||
# if we have nothing left in our queue, we have completed this phase
|
||||
# and prepare only ever has one pass
|
||||
if phase == ReadPhases.plan:
|
||||
self.phases_completed.append(phase)
|
||||
return
|
||||
|
||||
if len(self.queue) == 0:
|
||||
self.phases_completed.append(phase)
|
||||
if phase != ReadPhases.construct:
|
||||
# if we're not in the last phase, move our completed to our queue
|
||||
self.queue = self.completed
|
||||
self.completed = {}
|
||||
elif max_passes > 0:
|
||||
self.apply_phase(phase, max_passes=max_passes - 1)
|
||||
|
||||
|
||||
def flatten_hdf(
|
||||
h5f: h5py.File | h5py.Group, skip: str = "specifications"
|
||||
) -> Dict[str, H5SourceItem]:
|
||||
"""
|
||||
Flatten all child elements of hdf element into a dict of :class:`.H5SourceItem` s
|
||||
keyed by their path
|
||||
|
||||
Args:
|
||||
h5f (:class:`h5py.File` | :class:`h5py.Group`): HDF file or group to flatten!
|
||||
"""
|
||||
items = {}
|
||||
|
||||
def _itemize(name: str, obj: h5py.Dataset | h5py.Group) -> None:
|
||||
if skip in name:
|
||||
return
|
||||
|
||||
leaf = isinstance(obj, h5py.Dataset) or len(obj.keys()) == 0
|
||||
|
||||
if isinstance(obj, h5py.Dataset):
|
||||
h5_type = "dataset"
|
||||
elif isinstance(obj, h5py.Group):
|
||||
h5_type = "group"
|
||||
else:
|
||||
raise ValueError(f"Object must be a dataset or group! {obj}")
|
||||
|
||||
# get references in attrs and datasets to populate dependencies
|
||||
# depends = get_references(obj)
|
||||
|
||||
if not name.startswith("/"):
|
||||
name = "/" + name
|
||||
|
||||
attrs = dict(obj.attrs.items())
|
||||
|
||||
items[name] = H5SourceItem.model_construct(
|
||||
path=name,
|
||||
h5f_path=h5f.file.filename,
|
||||
leaf=leaf,
|
||||
# depends = depends,
|
||||
h5_type=h5_type,
|
||||
attrs=attrs,
|
||||
namespace=attrs.get("namespace"),
|
||||
neurodata_type=attrs.get("neurodata_type"),
|
||||
)
|
||||
|
||||
h5f.visititems(_itemize)
|
||||
# then add the root item
|
||||
_itemize(h5f.name, h5f)
|
||||
return items
|
||||
if obj.shape == ():
|
||||
# scalar
|
||||
if isinstance(obj[()], h5py.h5r.Reference):
|
||||
refs = [obj.file.get(obj[()]).name]
|
||||
elif len(obj) > 0 and isinstance(obj[0], h5py.h5r.Reference):
|
||||
# single-column
|
||||
refs = [obj.file.get(ref).name for ref in obj[:]]
|
||||
elif len(obj.dtype) > 1:
|
||||
# "compound" datasets
|
||||
refs = {}
|
||||
for name in obj.dtype.names:
|
||||
if isinstance(obj[name][0], h5py.h5r.Reference):
|
||||
refs[name] = [obj.file.get(ref).name for ref in obj[name]]
|
||||
return refs
|
||||
|
||||
|
||||
def get_references(obj: h5py.Dataset | h5py.Group) -> List[str]:
|
||||
|
@ -851,60 +66,21 @@ def get_references(obj: h5py.Dataset | h5py.Group) -> List[str]:
|
|||
List[str]: List of paths that are referenced within this object
|
||||
"""
|
||||
# Find references in attrs
|
||||
refs = [ref for ref in obj.attrs.values() if isinstance(ref, h5py.h5r.Reference)]
|
||||
attr_refs = get_attr_references(obj)
|
||||
dataset_refs = get_dataset_references(obj)
|
||||
|
||||
# For datasets, apply checks depending on shape of data.
|
||||
if isinstance(obj, h5py.Dataset):
|
||||
if obj.shape == ():
|
||||
# scalar
|
||||
if isinstance(obj[()], h5py.h5r.Reference):
|
||||
refs.append(obj[()])
|
||||
elif isinstance(obj[0], h5py.h5r.Reference):
|
||||
# single-column
|
||||
refs.extend(obj[:].tolist())
|
||||
elif len(obj.dtype) > 1:
|
||||
# "compound" datasets
|
||||
for name in obj.dtype.names:
|
||||
if isinstance(obj[name][0], h5py.h5r.Reference):
|
||||
refs.extend(obj[name].tolist())
|
||||
|
||||
# dereference and get name of reference
|
||||
if isinstance(obj, h5py.Dataset):
|
||||
depends = list(set([obj.parent.get(i).name for i in refs]))
|
||||
# flatten to list
|
||||
refs = [ref for ref in attr_refs.values()]
|
||||
if isinstance(dataset_refs, list):
|
||||
refs.extend(dataset_refs)
|
||||
else:
|
||||
depends = list(set([obj.get(i).name for i in refs]))
|
||||
return depends
|
||||
for v in dataset_refs.values():
|
||||
refs.extend(v)
|
||||
|
||||
return refs
|
||||
|
||||
|
||||
def resolve_references(
|
||||
src: dict, completed: Dict[str, H5ReadResult]
|
||||
) -> Tuple[dict, List[str], List[HDF5_Path]]:
|
||||
"""
|
||||
Recursively replace references to other completed items with their results
|
||||
|
||||
"""
|
||||
completes = []
|
||||
errors = []
|
||||
res = {}
|
||||
for path, item in src.items():
|
||||
if isinstance(item, HDF5_Path):
|
||||
other_item = completed.get(item)
|
||||
if other_item is None:
|
||||
errors.append(f"Couldn't find: {item}")
|
||||
res[path] = other_item.result
|
||||
completes.append(item)
|
||||
|
||||
elif isinstance(item, dict):
|
||||
inner_res, inner_error, inner_completes = resolve_references(item, completed)
|
||||
res[path] = inner_res
|
||||
errors.extend(inner_error)
|
||||
completes.extend(inner_completes)
|
||||
else:
|
||||
res[path] = item
|
||||
return res, errors, completes
|
||||
|
||||
|
||||
def resolve_hardlink(obj: Union[h5py.Group, h5py.Dataset]) -> HDF5_Path:
|
||||
def resolve_hardlink(obj: Union[h5py.Group, h5py.Dataset]) -> str:
|
||||
"""
|
||||
Unhelpfully, hardlinks are pretty challenging to detect with h5py, so we have
|
||||
to do extra work to check if an item is "real" or a hardlink to another item.
|
||||
|
@ -916,4 +92,4 @@ def resolve_hardlink(obj: Union[h5py.Group, h5py.Dataset]) -> HDF5_Path:
|
|||
We basically dereference the object and return that path instead of the path
|
||||
given by the object's ``name``
|
||||
"""
|
||||
return HDF5_Path(obj.file[obj.ref].name)
|
||||
return obj.file[obj.ref].name
|
||||
|
|
|
@ -127,6 +127,7 @@ class LinkMLProvider(Provider):
|
|||
for schema_needs in adapter.needed_imports.values():
|
||||
for needed in schema_needs:
|
||||
adapter.imported.append(ns_adapters[needed])
|
||||
adapter.populate_imports()
|
||||
|
||||
# then do the build
|
||||
res = {}
|
||||
|
|
|
@ -97,9 +97,9 @@ class Provider(ABC):
|
|||
module_path = Path(importlib.util.find_spec("nwb_models").origin).parent
|
||||
|
||||
if self.PROVIDES == "linkml":
|
||||
namespace_path = module_path / "schema" / "linkml" / namespace
|
||||
namespace_path = module_path / "schema" / "linkml" / namespace_module
|
||||
elif self.PROVIDES == "pydantic":
|
||||
namespace_path = module_path / "models" / "pydantic" / namespace
|
||||
namespace_path = module_path / "models" / "pydantic" / namespace_module
|
||||
|
||||
if version is not None:
|
||||
version_path = namespace_path / version_module_case(version)
|
||||
|
|
|
@ -278,7 +278,7 @@ class PydanticProvider(Provider):
|
|||
nwb_models.models.pydantic.{namespace}.{version}
|
||||
"""
|
||||
name_pieces = [
|
||||
"nwb_linkml",
|
||||
"nwb_models",
|
||||
"models",
|
||||
"pydantic",
|
||||
module_case(namespace),
|
||||
|
|
|
@ -131,7 +131,7 @@ class SchemaProvider(Provider):
|
|||
results = {}
|
||||
for ns, ns_result in linkml_res.items():
|
||||
results[ns] = pydantic_provider.build(
|
||||
ns_result["namespace"], versions=self.versions, **pydantic_kwargs
|
||||
ns_result.namespace, versions=self.versions, **pydantic_kwargs
|
||||
)
|
||||
return results
|
||||
|
||||
|
|
|
@ -1,20 +0,0 @@
|
|||
"""
|
||||
Types used with hdf5 io
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import GetCoreSchemaHandler
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
|
||||
|
||||
class HDF5_Path(str):
|
||||
"""
|
||||
Trivial subclass of string to indicate that it is a reference to a location within an HDF5 file
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls, source_type: Any, handler: GetCoreSchemaHandler
|
||||
) -> CoreSchema:
|
||||
return core_schema.no_info_after_validator_function(cls, handler(str))
|
|
@ -9,10 +9,16 @@ from .fixtures import * # noqa: F403
|
|||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--clean",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Don't reuse cached resources like cloned git repos or generated files",
|
||||
)
|
||||
parser.addoption(
|
||||
"--with-output",
|
||||
action="store_true",
|
||||
help="dump output in compliance test for richer debugging information",
|
||||
help="keep test outputs for richer debugging information",
|
||||
)
|
||||
parser.addoption(
|
||||
"--without-cache", action="store_true", help="Don't use a sqlite cache for network requests"
|
||||
|
|
Binary file not shown.
Binary file not shown.
61
nwb_linkml/tests/data/test_nwb.yaml
Normal file
61
nwb_linkml/tests/data/test_nwb.yaml
Normal file
|
@ -0,0 +1,61 @@
|
|||
# manually transcribed target version of nwb-linkml dataset
|
||||
# matching the one created by fixtures.py:nwb_file
|
||||
meta:
|
||||
id: my_dataset
|
||||
|
||||
prefixes:
|
||||
nwbfile:
|
||||
- path: "test_nwb.nwb"
|
||||
- hash: "blake2b:blahblahblahblah"
|
||||
|
||||
imports:
|
||||
core:
|
||||
as: nwb
|
||||
version: "2.7.0"
|
||||
from:
|
||||
- pypi:
|
||||
package: nwb-models
|
||||
hdmf-common:
|
||||
as: hdmf
|
||||
version: "1.8.0"
|
||||
from:
|
||||
- pypi:
|
||||
package: nwb-models
|
||||
|
||||
extracellular_ephys: &ecephys
|
||||
electrodes:
|
||||
group:
|
||||
- @shank0
|
||||
- @shank0
|
||||
- @shank0
|
||||
- @shank1
|
||||
- # etc.
|
||||
shank0:
|
||||
device: @general.devices.array
|
||||
shank1:
|
||||
device: @general.devices.array
|
||||
# etc.
|
||||
|
||||
data: !nwb.NWBFile
|
||||
file_create_date: [ 2024-01-01 ]
|
||||
identifier: "1111-1111-1111-1111"
|
||||
session_description: All that you touch, you change.
|
||||
session_start_time: 2024-01-01T01:01:01
|
||||
general:
|
||||
devices:
|
||||
- Heka ITC-1600:
|
||||
- Microscope:
|
||||
description: My two-photon microscope
|
||||
manufacturer: The best microscope manufacturer
|
||||
- array:
|
||||
description: old reliable
|
||||
manufacturer: diy
|
||||
extracellular_ephys: nwbfile:/general/extracellular_ephys
|
||||
experiment_description: All that you change, changes you.
|
||||
experimenter: [ "Lauren Oya Olamina" ]
|
||||
institution: Earthseed Research Institute
|
||||
keywords:
|
||||
- behavior
|
||||
- belief
|
||||
related_publications: doi:10.1016/j.neuron.2016.12.011
|
||||
|
76
nwb_linkml/tests/data/test_nwb_condensed_sketch.yaml
Normal file
76
nwb_linkml/tests/data/test_nwb_condensed_sketch.yaml
Normal file
|
@ -0,0 +1,76 @@
|
|||
# Sketch of a condensed expression syntax for creation with nwb-linkml
|
||||
# just a sketch! keeping here for continued work but currently unused.
|
||||
---
|
||||
id: my_dataset
|
||||
|
||||
prefixes:
|
||||
nwbfile:
|
||||
- path: "test_nwb.nwb"
|
||||
- hash: "blake2b:blahblahblahblah"
|
||||
|
||||
imports:
|
||||
core:
|
||||
as: nwb
|
||||
version: "2.7.0"
|
||||
from:
|
||||
- pypi:
|
||||
package: nwb-models
|
||||
hdmf-common:
|
||||
as: hdmf
|
||||
version: "1.8.0"
|
||||
from:
|
||||
- pypi:
|
||||
package: nwb-models
|
||||
---
|
||||
|
||||
extracellular_ephys: &ecephys
|
||||
electrodes:
|
||||
group:
|
||||
- @shank{{i}}
|
||||
- @shank{{i}}
|
||||
- @shank{{i}}
|
||||
# could have expression here like { range(3) } => i
|
||||
# - ... { range(3) } => i
|
||||
# or blank ... implies use expression from outer scope
|
||||
- ...
|
||||
shank{{i}}:
|
||||
device: @general.devices.array
|
||||
...: { range(3) } => i
|
||||
|
||||
# expands to
|
||||
extracellular_ephys:
|
||||
electrodes:
|
||||
group:
|
||||
- @shank0
|
||||
- @shank0
|
||||
- @shank0
|
||||
- @shank1
|
||||
- # etc.
|
||||
shank0:
|
||||
device: @general.devices.array
|
||||
shank1:
|
||||
device: @general.devices.array
|
||||
# etc.
|
||||
|
||||
data: !{{ nwb.NWBFile }} <== :nwbfile
|
||||
file_create_date: [ 2024-01-01 ]
|
||||
identifier: "1111-1111-1111-1111"
|
||||
session_description: All that you touch, you change.
|
||||
session_start_time: 2024-01-01T01:01:01
|
||||
general:
|
||||
devices:
|
||||
- Heka ITC-1600:
|
||||
- Microscope:
|
||||
- array:
|
||||
description: old reliable
|
||||
manufacturer: diy
|
||||
extracellular_ephys: *ecephys
|
||||
|
||||
experiment_description: All that you change, changes you.
|
||||
experimenter: [ "Lauren Oya Olamina" ]
|
||||
institution: Earthseed Research Institute
|
||||
keywords:
|
||||
- behavior
|
||||
- belief
|
||||
related_publications: doi:10.1016/j.neuron.2016.12.011
|
||||
|
29
nwb_linkml/tests/fixtures/__init__.py
vendored
Normal file
29
nwb_linkml/tests/fixtures/__init__.py
vendored
Normal file
|
@ -0,0 +1,29 @@
|
|||
from .nwb import nwb_file, nwb_file_base
|
||||
from .paths import data_dir, tmp_output_dir, tmp_output_dir_func, tmp_output_dir_mod
|
||||
from .schema import (
|
||||
NWBSchemaTest,
|
||||
TestSchemas,
|
||||
linkml_schema,
|
||||
linkml_schema_bare,
|
||||
nwb_core_fixture,
|
||||
nwb_core_linkml,
|
||||
nwb_core_module,
|
||||
nwb_schema,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"NWBSchemaTest",
|
||||
"TestSchemas",
|
||||
"data_dir",
|
||||
"linkml_schema",
|
||||
"linkml_schema_bare",
|
||||
"nwb_core_fixture",
|
||||
"nwb_core_linkml",
|
||||
"nwb_core_module",
|
||||
"nwb_file",
|
||||
"nwb_file_base",
|
||||
"nwb_schema",
|
||||
"tmp_output_dir",
|
||||
"tmp_output_dir_func",
|
||||
"tmp_output_dir_mod",
|
||||
]
|
477
nwb_linkml/tests/fixtures/nwb.py
vendored
Normal file
477
nwb_linkml/tests/fixtures/nwb.py
vendored
Normal file
|
@ -0,0 +1,477 @@
|
|||
from datetime import datetime
|
||||
from itertools import product
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from hdmf.common import DynamicTable, VectorData
|
||||
from pynwb import NWBHDF5IO, NWBFile, TimeSeries
|
||||
from pynwb.base import TimeSeriesReference, TimeSeriesReferenceVectorData
|
||||
from pynwb.behavior import Position, SpatialSeries
|
||||
from pynwb.ecephys import LFP, ElectricalSeries
|
||||
from pynwb.file import Subject
|
||||
from pynwb.icephys import VoltageClampSeries, VoltageClampStimulusSeries
|
||||
from pynwb.image import ImageSeries
|
||||
from pynwb.ophys import (
|
||||
CorrectedImageStack,
|
||||
Fluorescence,
|
||||
ImageSegmentation,
|
||||
MotionCorrection,
|
||||
OnePhotonSeries,
|
||||
OpticalChannel,
|
||||
RoiResponseSeries,
|
||||
TwoPhotonSeries,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def nwb_file_base() -> NWBFile:
|
||||
nwbfile = NWBFile(
|
||||
session_description="All that you touch, you change.", # required
|
||||
identifier="1111-1111-1111-1111", # required
|
||||
session_start_time=datetime(year=2024, month=1, day=1), # required
|
||||
session_id="session_1234", # optional
|
||||
experimenter=[
|
||||
"Lauren Oya Olamina",
|
||||
], # optional
|
||||
institution="Earthseed Research Institute", # optional
|
||||
experiment_description="All that you change, changes you.", # optional
|
||||
keywords=["behavior", "belief"], # optional
|
||||
related_publications="doi:10.1016/j.neuron.2016.12.011", # optional
|
||||
)
|
||||
subject = Subject(
|
||||
subject_id="001",
|
||||
age="P90D",
|
||||
description="mouse 5",
|
||||
species="Mus musculus",
|
||||
sex="M",
|
||||
)
|
||||
nwbfile.subject = subject
|
||||
return nwbfile
|
||||
|
||||
|
||||
def _nwb_timeseries(nwbfile: NWBFile) -> NWBFile:
|
||||
data = np.arange(100, 200, 10)
|
||||
timestamps = np.arange(10.0)
|
||||
time_series_with_timestamps = TimeSeries(
|
||||
name="test_timeseries",
|
||||
description="an example time series",
|
||||
data=data,
|
||||
unit="m",
|
||||
timestamps=timestamps,
|
||||
)
|
||||
nwbfile.add_acquisition(time_series_with_timestamps)
|
||||
return nwbfile
|
||||
|
||||
|
||||
def _nwb_position(nwbfile: NWBFile) -> NWBFile:
|
||||
position_data = np.array([np.linspace(0, 10, 50), np.linspace(0, 8, 50)]).T
|
||||
position_timestamps = np.linspace(0, 50).astype(float) / 200
|
||||
|
||||
spatial_series_obj = SpatialSeries(
|
||||
name="SpatialSeries",
|
||||
description="(x,y) position in open field",
|
||||
data=position_data,
|
||||
timestamps=position_timestamps,
|
||||
reference_frame="(0,0) is bottom left corner",
|
||||
)
|
||||
# name is set to "Position" by default
|
||||
position_obj = Position(spatial_series=spatial_series_obj)
|
||||
behavior_module = nwbfile.create_processing_module(
|
||||
name="behavior", description="processed behavioral data"
|
||||
)
|
||||
behavior_module.add(position_obj)
|
||||
|
||||
nwbfile.add_trial_column(
|
||||
name="correct",
|
||||
description="whether the trial was correct",
|
||||
)
|
||||
nwbfile.add_trial(start_time=1.0, stop_time=5.0, correct=True)
|
||||
nwbfile.add_trial(start_time=6.0, stop_time=10.0, correct=False)
|
||||
return nwbfile
|
||||
|
||||
|
||||
def _nwb_ecephys(nwbfile: NWBFile) -> NWBFile:
|
||||
"""
|
||||
Extracellular Ephys
|
||||
https://pynwb.readthedocs.io/en/latest/tutorials/domain/ecephys.html
|
||||
"""
|
||||
generator = np.random.default_rng()
|
||||
device = nwbfile.create_device(name="array", description="old reliable", manufacturer="diy")
|
||||
nwbfile.add_electrode_column(name="label", description="label of electrode")
|
||||
|
||||
nshanks = 4
|
||||
nchannels_per_shank = 3
|
||||
electrode_counter = 0
|
||||
|
||||
for ishank in range(nshanks):
|
||||
# create an electrode group for this shank
|
||||
electrode_group = nwbfile.create_electrode_group(
|
||||
name=f"shank{ishank}",
|
||||
description=f"electrode group for shank {ishank}",
|
||||
device=device,
|
||||
location="brain area",
|
||||
)
|
||||
# add electrodes to the electrode table
|
||||
for ielec in range(nchannels_per_shank):
|
||||
nwbfile.add_electrode(
|
||||
group=electrode_group,
|
||||
label=f"shank{ishank}elec{ielec}",
|
||||
location="brain area",
|
||||
)
|
||||
electrode_counter += 1
|
||||
all_table_region = nwbfile.create_electrode_table_region(
|
||||
region=list(range(electrode_counter)), # reference row indices 0 to N-1
|
||||
description="all electrodes",
|
||||
)
|
||||
raw_data = generator.standard_normal((50, 12))
|
||||
raw_electrical_series = ElectricalSeries(
|
||||
name="ElectricalSeries",
|
||||
description="Raw acquisition traces",
|
||||
data=raw_data,
|
||||
electrodes=all_table_region,
|
||||
starting_time=0.0,
|
||||
# timestamp of the first sample in seconds relative to the session start time
|
||||
rate=20000.0, # in Hz
|
||||
)
|
||||
nwbfile.add_acquisition(raw_electrical_series)
|
||||
|
||||
# --------------------------------------------------
|
||||
# LFP
|
||||
# --------------------------------------------------
|
||||
generator = np.random.default_rng()
|
||||
lfp_data = generator.standard_normal((50, 12))
|
||||
lfp_electrical_series = ElectricalSeries(
|
||||
name="ElectricalSeries",
|
||||
description="LFP data",
|
||||
data=lfp_data,
|
||||
electrodes=all_table_region,
|
||||
starting_time=0.0,
|
||||
rate=200.0,
|
||||
)
|
||||
lfp = LFP(electrical_series=lfp_electrical_series)
|
||||
ecephys_module = nwbfile.create_processing_module(
|
||||
name="ecephys", description="processed extracellular electrophysiology data"
|
||||
)
|
||||
ecephys_module.add(lfp)
|
||||
|
||||
return nwbfile
|
||||
|
||||
|
||||
def _nwb_units(nwbfile: NWBFile) -> NWBFile:
|
||||
generator = np.random.default_rng()
|
||||
# Spike Times
|
||||
nwbfile.add_unit_column(name="quality", description="sorting quality")
|
||||
firing_rate = 20
|
||||
n_units = 10
|
||||
res = 1000
|
||||
duration = 20
|
||||
for _ in range(n_units):
|
||||
spike_times = np.where(generator.random(res * duration) < (firing_rate / res))[0] / res
|
||||
nwbfile.add_unit(spike_times=spike_times, quality="good")
|
||||
return nwbfile
|
||||
|
||||
|
||||
def _nwb_icephys(nwbfile: NWBFile) -> NWBFile:
|
||||
device = nwbfile.create_device(name="Heka ITC-1600")
|
||||
electrode = nwbfile.create_icephys_electrode(
|
||||
name="elec0", description="a mock intracellular electrode", device=device
|
||||
)
|
||||
stimulus = VoltageClampStimulusSeries(
|
||||
name="ccss",
|
||||
data=[1, 2, 3, 4, 5],
|
||||
starting_time=123.6,
|
||||
rate=10e3,
|
||||
electrode=electrode,
|
||||
gain=0.02,
|
||||
sweep_number=np.uint64(15),
|
||||
)
|
||||
|
||||
# Create and icephys response
|
||||
response = VoltageClampSeries(
|
||||
name="vcs",
|
||||
data=[0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
conversion=1e-12,
|
||||
resolution=np.nan,
|
||||
starting_time=123.6,
|
||||
rate=20e3,
|
||||
electrode=electrode,
|
||||
gain=0.02,
|
||||
capacitance_slow=100e-12,
|
||||
resistance_comp_correction=70.0,
|
||||
sweep_number=np.uint64(15),
|
||||
)
|
||||
# we can also add stimulus template data as follows
|
||||
rowindex = nwbfile.add_intracellular_recording(
|
||||
electrode=electrode, stimulus=stimulus, response=response, id=10
|
||||
)
|
||||
|
||||
rowindex2 = nwbfile.add_intracellular_recording(
|
||||
electrode=electrode,
|
||||
stimulus=stimulus,
|
||||
stimulus_start_index=1,
|
||||
stimulus_index_count=3,
|
||||
response=response,
|
||||
response_start_index=2,
|
||||
response_index_count=3,
|
||||
id=11,
|
||||
)
|
||||
rowindex3 = nwbfile.add_intracellular_recording(electrode=electrode, response=response, id=12)
|
||||
|
||||
nwbfile.intracellular_recordings.add_column(
|
||||
name="recording_tag",
|
||||
data=["A1", "A2", "A3"],
|
||||
description="String with a recording tag",
|
||||
)
|
||||
location_column = VectorData(
|
||||
name="location",
|
||||
data=["Mordor", "Gondor", "Rohan"],
|
||||
description="Recording location in Middle Earth",
|
||||
)
|
||||
|
||||
lab_category = DynamicTable(
|
||||
name="recording_lab_data",
|
||||
description="category table for lab-specific recording metadata",
|
||||
colnames=[
|
||||
"location",
|
||||
],
|
||||
columns=[
|
||||
location_column,
|
||||
],
|
||||
)
|
||||
# Add the table as a new category to our intracellular_recordings
|
||||
nwbfile.intracellular_recordings.add_category(category=lab_category)
|
||||
nwbfile.intracellular_recordings.add_column(
|
||||
name="voltage_threshold",
|
||||
data=[0.1, 0.12, 0.13],
|
||||
description="Just an example column on the electrodes category table",
|
||||
category="electrodes",
|
||||
)
|
||||
stimulus_template = VoltageClampStimulusSeries(
|
||||
name="ccst",
|
||||
data=[0, 1, 2, 3, 4],
|
||||
starting_time=0.0,
|
||||
rate=10e3,
|
||||
electrode=electrode,
|
||||
gain=0.02,
|
||||
)
|
||||
nwbfile.add_stimulus_template(stimulus_template)
|
||||
|
||||
nwbfile.intracellular_recordings.add_column(
|
||||
name="stimulus_template",
|
||||
data=[
|
||||
TimeSeriesReference(0, 5, stimulus_template),
|
||||
# (start_index, index_count, stimulus_template)
|
||||
TimeSeriesReference(1, 3, stimulus_template),
|
||||
TimeSeriesReference.empty(stimulus_template),
|
||||
],
|
||||
# if there was no data for that recording, use empty reference
|
||||
description=(
|
||||
"Column storing the reference to the stimulus template for the recording (rows)."
|
||||
),
|
||||
category="stimuli",
|
||||
col_cls=TimeSeriesReferenceVectorData,
|
||||
)
|
||||
|
||||
icephys_simultaneous_recordings = nwbfile.get_icephys_simultaneous_recordings()
|
||||
icephys_simultaneous_recordings.add_column(
|
||||
name="simultaneous_recording_tag",
|
||||
description="A custom tag for simultaneous_recordings",
|
||||
)
|
||||
simultaneous_index = nwbfile.add_icephys_simultaneous_recording(
|
||||
recordings=[rowindex, rowindex2, rowindex3],
|
||||
id=12,
|
||||
simultaneous_recording_tag="LabTag1",
|
||||
)
|
||||
repetition_index = nwbfile.add_icephys_repetition(
|
||||
sequential_recordings=[simultaneous_index], id=17
|
||||
)
|
||||
nwbfile.add_icephys_experimental_condition(repetitions=[repetition_index], id=19)
|
||||
nwbfile.icephys_experimental_conditions.add_column(
|
||||
name="tag",
|
||||
data=np.arange(1),
|
||||
description="integer tag for a experimental condition",
|
||||
)
|
||||
return nwbfile
|
||||
|
||||
|
||||
def _nwb_ca_imaging(nwbfile: NWBFile) -> NWBFile:
|
||||
"""
|
||||
Calcium Imaging
|
||||
https://pynwb.readthedocs.io/en/latest/tutorials/domain/ophys.html
|
||||
"""
|
||||
generator = np.random.default_rng()
|
||||
device = nwbfile.create_device(
|
||||
name="Microscope",
|
||||
description="My two-photon microscope",
|
||||
manufacturer="The best microscope manufacturer",
|
||||
)
|
||||
optical_channel = OpticalChannel(
|
||||
name="OpticalChannel",
|
||||
description="an optical channel",
|
||||
emission_lambda=500.0,
|
||||
)
|
||||
imaging_plane = nwbfile.create_imaging_plane(
|
||||
name="ImagingPlane",
|
||||
optical_channel=optical_channel,
|
||||
imaging_rate=30.0,
|
||||
description="a very interesting part of the brain",
|
||||
device=device,
|
||||
excitation_lambda=600.0,
|
||||
indicator="GFP",
|
||||
location="V1",
|
||||
grid_spacing=[0.01, 0.01],
|
||||
grid_spacing_unit="meters",
|
||||
origin_coords=[1.0, 2.0, 3.0],
|
||||
origin_coords_unit="meters",
|
||||
)
|
||||
one_p_series = OnePhotonSeries(
|
||||
name="OnePhotonSeries",
|
||||
description="Raw 1p data",
|
||||
data=np.ones((1000, 100, 100)),
|
||||
imaging_plane=imaging_plane,
|
||||
rate=1.0,
|
||||
unit="normalized amplitude",
|
||||
)
|
||||
nwbfile.add_acquisition(one_p_series)
|
||||
two_p_series = TwoPhotonSeries(
|
||||
name="TwoPhotonSeries",
|
||||
description="Raw 2p data",
|
||||
data=np.ones((1000, 100, 100)),
|
||||
imaging_plane=imaging_plane,
|
||||
rate=1.0,
|
||||
unit="normalized amplitude",
|
||||
)
|
||||
|
||||
nwbfile.add_acquisition(two_p_series)
|
||||
|
||||
corrected = ImageSeries(
|
||||
name="corrected", # this must be named "corrected"
|
||||
description="A motion corrected image stack",
|
||||
data=np.ones((1000, 100, 100)),
|
||||
unit="na",
|
||||
format="raw",
|
||||
starting_time=0.0,
|
||||
rate=1.0,
|
||||
)
|
||||
|
||||
xy_translation = TimeSeries(
|
||||
name="xy_translation",
|
||||
description="x,y translation in pixels",
|
||||
data=np.ones((1000, 2)),
|
||||
unit="pixels",
|
||||
starting_time=0.0,
|
||||
rate=1.0,
|
||||
)
|
||||
|
||||
corrected_image_stack = CorrectedImageStack(
|
||||
corrected=corrected,
|
||||
original=one_p_series,
|
||||
xy_translation=xy_translation,
|
||||
)
|
||||
|
||||
motion_correction = MotionCorrection(corrected_image_stacks=[corrected_image_stack])
|
||||
|
||||
ophys_module = nwbfile.create_processing_module(
|
||||
name="ophys", description="optical physiology processed data"
|
||||
)
|
||||
|
||||
ophys_module.add(motion_correction)
|
||||
|
||||
img_seg = ImageSegmentation()
|
||||
|
||||
ps = img_seg.create_plane_segmentation(
|
||||
name="PlaneSegmentation",
|
||||
description="output from segmenting my favorite imaging plane",
|
||||
imaging_plane=imaging_plane,
|
||||
reference_images=one_p_series, # optional
|
||||
)
|
||||
|
||||
ophys_module.add(img_seg)
|
||||
|
||||
for _ in range(30):
|
||||
image_mask = np.zeros((100, 100))
|
||||
|
||||
# randomly generate example image masks
|
||||
x = generator.integers(0, 95)
|
||||
y = generator.integers(0, 95)
|
||||
image_mask[x : x + 5, y : y + 5] = 1
|
||||
|
||||
# add image mask to plane segmentation
|
||||
ps.add_roi(image_mask=image_mask)
|
||||
|
||||
ps2 = img_seg.create_plane_segmentation(
|
||||
name="PlaneSegmentation2",
|
||||
description="output from segmenting my favorite imaging plane",
|
||||
imaging_plane=imaging_plane,
|
||||
reference_images=one_p_series, # optional
|
||||
)
|
||||
|
||||
for _ in range(30):
|
||||
# randomly generate example starting points for region
|
||||
x = generator.integers(0, 95)
|
||||
y = generator.integers(0, 95)
|
||||
|
||||
# define an example 4 x 3 region of pixels of weight '1'
|
||||
pixel_mask = [(ix, iy, 1) for ix in range(x, x + 4) for iy in range(y, y + 3)]
|
||||
|
||||
# add pixel mask to plane segmentation
|
||||
ps2.add_roi(pixel_mask=pixel_mask)
|
||||
|
||||
ps3 = img_seg.create_plane_segmentation(
|
||||
name="PlaneSegmentation3",
|
||||
description="output from segmenting my favorite imaging plane",
|
||||
imaging_plane=imaging_plane,
|
||||
reference_images=one_p_series, # optional
|
||||
)
|
||||
|
||||
for _ in range(30):
|
||||
# randomly generate example starting points for region
|
||||
x = generator.integers(0, 95)
|
||||
y = generator.integers(0, 95)
|
||||
z = generator.integers(0, 15)
|
||||
|
||||
# define an example 4 x 3 x 2 voxel region of weight '0.5'
|
||||
voxel_mask = []
|
||||
for ix, iy, iz in product(range(x, x + 4), range(y, y + 3), range(z, z + 2)):
|
||||
voxel_mask.append((ix, iy, iz, 0.5))
|
||||
|
||||
# add voxel mask to plane segmentation
|
||||
ps3.add_roi(voxel_mask=voxel_mask)
|
||||
rt_region = ps.create_roi_table_region(region=[0, 1], description="the first of two ROIs")
|
||||
roi_resp_series = RoiResponseSeries(
|
||||
name="RoiResponseSeries",
|
||||
description="Fluorescence responses for two ROIs",
|
||||
data=np.ones((50, 2)), # 50 samples, 2 ROIs
|
||||
rois=rt_region,
|
||||
unit="lumens",
|
||||
rate=30.0,
|
||||
)
|
||||
fl = Fluorescence(roi_response_series=roi_resp_series)
|
||||
ophys_module.add(fl)
|
||||
return nwbfile
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def nwb_file(tmp_output_dir, nwb_file_base, request: pytest.FixtureRequest) -> Path:
|
||||
"""
|
||||
NWB File created with pynwb that uses all the weird language features
|
||||
|
||||
Borrowing code from pynwb docs in one humonogous fixture function
|
||||
since there's not really a reason to
|
||||
"""
|
||||
nwb_path = tmp_output_dir / "test_nwb.nwb"
|
||||
if nwb_path.exists() and not request.config.getoption("--clean"):
|
||||
return nwb_path
|
||||
|
||||
nwbfile = nwb_file_base
|
||||
nwbfile = _nwb_timeseries(nwbfile)
|
||||
nwbfile = _nwb_position(nwbfile)
|
||||
nwbfile = _nwb_ecephys(nwbfile)
|
||||
nwbfile = _nwb_units(nwbfile)
|
||||
nwbfile = _nwb_icephys(nwbfile)
|
||||
|
||||
with NWBHDF5IO(nwb_path, "w") as io:
|
||||
io.write(nwbfile)
|
||||
|
||||
return nwb_path
|
63
nwb_linkml/tests/fixtures/paths.py
vendored
Normal file
63
nwb_linkml/tests/fixtures/paths.py
vendored
Normal file
|
@ -0,0 +1,63 @@
|
|||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def tmp_output_dir(request: pytest.FixtureRequest) -> Path:
|
||||
path = Path(__file__).parents[1].resolve() / "__tmp__"
|
||||
if path.exists():
|
||||
if request.config.getoption("--clean"):
|
||||
shutil.rmtree(path)
|
||||
else:
|
||||
for subdir in path.iterdir():
|
||||
if subdir.name == "git":
|
||||
# don't wipe out git repos every time, they don't rly change
|
||||
continue
|
||||
elif (
|
||||
subdir.is_file()
|
||||
and subdir.parent != path
|
||||
or subdir.is_file()
|
||||
and subdir.suffix == ".nwb"
|
||||
):
|
||||
continue
|
||||
elif subdir.is_file():
|
||||
subdir.unlink(missing_ok=True)
|
||||
else:
|
||||
shutil.rmtree(str(subdir))
|
||||
path.mkdir(exist_ok=True)
|
||||
|
||||
return path
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def tmp_output_dir_func(tmp_output_dir) -> Path:
|
||||
"""
|
||||
tmp output dir that gets cleared between every function
|
||||
cleans at the start rather than at cleanup in case the output is to be inspected
|
||||
"""
|
||||
subpath = tmp_output_dir / "__tmpfunc__"
|
||||
if subpath.exists():
|
||||
shutil.rmtree(str(subpath))
|
||||
subpath.mkdir()
|
||||
return subpath
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def tmp_output_dir_mod(tmp_output_dir) -> Path:
|
||||
"""
|
||||
tmp output dir that gets cleared between every function
|
||||
cleans at the start rather than at cleanup in case the output is to be inspected
|
||||
"""
|
||||
subpath = tmp_output_dir / "__tmpmod__"
|
||||
if subpath.exists():
|
||||
shutil.rmtree(str(subpath))
|
||||
subpath.mkdir()
|
||||
return subpath
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def data_dir() -> Path:
|
||||
path = Path(__file__).parents[1].resolve() / "data"
|
||||
return path
|
|
@ -1,4 +1,3 @@
|
|||
import shutil
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from types import ModuleType
|
||||
|
@ -14,70 +13,12 @@ from linkml_runtime.linkml_model import (
|
|||
TypeDefinition,
|
||||
)
|
||||
|
||||
from nwb_linkml.adapters.namespaces import NamespacesAdapter
|
||||
from nwb_linkml.adapters import NamespacesAdapter
|
||||
from nwb_linkml.io import schema as io
|
||||
from nwb_linkml.providers import LinkMLProvider, PydanticProvider
|
||||
from nwb_linkml.providers.linkml import LinkMLSchemaBuild
|
||||
from nwb_schema_language import Attribute, Dataset, Group
|
||||
|
||||
__all__ = [
|
||||
"NWBSchemaTest",
|
||||
"TestSchemas",
|
||||
"data_dir",
|
||||
"linkml_schema",
|
||||
"linkml_schema_bare",
|
||||
"nwb_core_fixture",
|
||||
"nwb_schema",
|
||||
"tmp_output_dir",
|
||||
"tmp_output_dir_func",
|
||||
"tmp_output_dir_mod",
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def tmp_output_dir() -> Path:
|
||||
path = Path(__file__).parent.resolve() / "__tmp__"
|
||||
if path.exists():
|
||||
for subdir in path.iterdir():
|
||||
if subdir.name == "git":
|
||||
# don't wipe out git repos every time, they don't rly change
|
||||
continue
|
||||
elif subdir.is_file() and subdir.parent != path:
|
||||
continue
|
||||
elif subdir.is_file():
|
||||
subdir.unlink(missing_ok=True)
|
||||
else:
|
||||
shutil.rmtree(str(subdir))
|
||||
path.mkdir(exist_ok=True)
|
||||
|
||||
return path
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def tmp_output_dir_func(tmp_output_dir) -> Path:
|
||||
"""
|
||||
tmp output dir that gets cleared between every function
|
||||
cleans at the start rather than at cleanup in case the output is to be inspected
|
||||
"""
|
||||
subpath = tmp_output_dir / "__tmpfunc__"
|
||||
if subpath.exists():
|
||||
shutil.rmtree(str(subpath))
|
||||
subpath.mkdir()
|
||||
return subpath
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def tmp_output_dir_mod(tmp_output_dir) -> Path:
|
||||
"""
|
||||
tmp output dir that gets cleared between every function
|
||||
cleans at the start rather than at cleanup in case the output is to be inspected
|
||||
"""
|
||||
subpath = tmp_output_dir / "__tmpmod__"
|
||||
if subpath.exists():
|
||||
shutil.rmtree(str(subpath))
|
||||
subpath.mkdir()
|
||||
return subpath
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", params=[{"core_version": "2.7.0", "hdmf_version": "1.8.0"}])
|
||||
def nwb_core_fixture(request) -> NamespacesAdapter:
|
||||
|
@ -108,12 +49,6 @@ def nwb_core_module(nwb_core_linkml: LinkMLSchemaBuild, tmp_output_dir) -> Modul
|
|||
return mod
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def data_dir() -> Path:
|
||||
path = Path(__file__).parent.resolve() / "data"
|
||||
return path
|
||||
|
||||
|
||||
@dataclass
|
||||
class TestSchemas:
|
||||
__test__ = False
|
|
@ -151,7 +151,7 @@ def test_name_slot():
|
|||
assert slot.name == "name"
|
||||
assert slot.required
|
||||
assert slot.range == "string"
|
||||
assert slot.identifier is None
|
||||
assert slot.identifier
|
||||
assert slot.ifabsent is None
|
||||
assert slot.equals_string is None
|
||||
|
||||
|
@ -160,7 +160,7 @@ def test_name_slot():
|
|||
assert slot.name == "name"
|
||||
assert slot.required
|
||||
assert slot.range == "string"
|
||||
assert slot.identifier is None
|
||||
assert slot.identifier
|
||||
assert slot.ifabsent == "string(FixedName)"
|
||||
assert slot.equals_string == "FixedName"
|
||||
|
||||
|
|
|
@ -5,6 +5,8 @@ Note that since this is largely a subclass, we don't test all of the functionali
|
|||
because it's tested in the base linkml package.
|
||||
"""
|
||||
|
||||
# ruff: noqa: F821 - until the tests here settle down
|
||||
|
||||
import re
|
||||
import sys
|
||||
import typing
|
||||
|
@ -16,7 +18,7 @@ import pytest
|
|||
from numpydantic.ndarray import NDArrayMeta
|
||||
from pydantic import BaseModel
|
||||
|
||||
from nwb_linkml.generators.pydantic import NWBPydanticGenerator, compile_python
|
||||
from nwb_linkml.generators.pydantic import NWBPydanticGenerator
|
||||
|
||||
from ..fixtures import (
|
||||
TestSchemas,
|
||||
|
|
|
@ -284,14 +284,14 @@ def test_dynamictable_assert_equal_length():
|
|||
"existing_col": np.arange(10),
|
||||
"new_col_1": hdmf.VectorData(value=np.arange(11)),
|
||||
}
|
||||
with pytest.raises(ValidationError, match="Columns are not of equal length"):
|
||||
with pytest.raises(ValidationError, match="columns are not of equal length"):
|
||||
_ = MyDT(**cols)
|
||||
|
||||
cols = {
|
||||
"existing_col": np.arange(11),
|
||||
"new_col_1": hdmf.VectorData(value=np.arange(10)),
|
||||
}
|
||||
with pytest.raises(ValidationError, match="Columns are not of equal length"):
|
||||
with pytest.raises(ValidationError, match="columns are not of equal length"):
|
||||
_ = MyDT(**cols)
|
||||
|
||||
# wrong lengths are fine as long as the index is good
|
||||
|
@ -308,7 +308,7 @@ def test_dynamictable_assert_equal_length():
|
|||
"new_col_1": hdmf.VectorData(value=np.arange(100)),
|
||||
"new_col_1_index": hdmf.VectorIndex(value=np.arange(0, 100, 5) + 5),
|
||||
}
|
||||
with pytest.raises(ValidationError, match="Columns are not of equal length"):
|
||||
with pytest.raises(ValidationError, match="columns are not of equal length"):
|
||||
_ = MyDT(**cols)
|
||||
|
||||
|
||||
|
@ -344,7 +344,7 @@ def test_vectordata_indexing():
|
|||
"""
|
||||
n_rows = 50
|
||||
value_array, index_array = _ragged_array(n_rows)
|
||||
value_array = np.concat(value_array)
|
||||
value_array = np.concatenate(value_array)
|
||||
|
||||
data = hdmf.VectorData(value=value_array)
|
||||
|
||||
|
@ -551,13 +551,13 @@ def test_aligned_dynamictable_indexing(aligned_table):
|
|||
row.columns
|
||||
== pd.MultiIndex.from_tuples(
|
||||
[
|
||||
("table1", "index"),
|
||||
("table1", "id"),
|
||||
("table1", "col1"),
|
||||
("table1", "col2"),
|
||||
("table2", "index"),
|
||||
("table2", "id"),
|
||||
("table2", "col3"),
|
||||
("table2", "col4"),
|
||||
("table3", "index"),
|
||||
("table3", "id"),
|
||||
("table3", "col5"),
|
||||
("table3", "col6"),
|
||||
]
|
||||
|
@ -592,7 +592,7 @@ def test_mixed_aligned_dynamictable(aligned_table):
|
|||
|
||||
AlignedTable, cols = aligned_table
|
||||
value_array, index_array = _ragged_array(10)
|
||||
value_array = np.concat(value_array)
|
||||
value_array = np.concatenate(value_array)
|
||||
|
||||
data = hdmf.VectorData(value=value_array)
|
||||
index = hdmf.VectorIndex(value=index_array)
|
||||
|
@ -754,11 +754,11 @@ def test_aligned_dynamictable_ictable(intracellular_recordings_table):
|
|||
rows.columns
|
||||
== pd.MultiIndex.from_tuples(
|
||||
[
|
||||
("electrodes", "index"),
|
||||
("electrodes", "id"),
|
||||
("electrodes", "electrode"),
|
||||
("stimuli", "index"),
|
||||
("stimuli", "id"),
|
||||
("stimuli", "stimulus"),
|
||||
("responses", "index"),
|
||||
("responses", "id"),
|
||||
("responses", "response"),
|
||||
]
|
||||
)
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
import pdb
|
||||
|
||||
import h5py
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from nwb_linkml.io.hdf5 import HDF5IO, truncate_file
|
||||
from nwb_linkml.io.hdf5 import HDF5IO, filter_dependency_graph, hdf_dependency_graph, truncate_file
|
||||
from nwb_linkml.maps.hdf5 import resolve_hardlink
|
||||
|
||||
|
||||
@pytest.mark.skip()
|
||||
|
@ -13,7 +13,7 @@ def test_hdf_read(data_dir, dset):
|
|||
NWBFILE = data_dir / dset
|
||||
io = HDF5IO(path=NWBFILE)
|
||||
# the test for now is just whether we can read it lol
|
||||
model = io.read()
|
||||
_ = io.read()
|
||||
|
||||
|
||||
def test_truncate_file(tmp_output_dir):
|
||||
|
@ -86,15 +86,60 @@ def test_truncate_file(tmp_output_dir):
|
|||
assert target_h5f["data"]["dataset_contig"].attrs["anattr"] == 1
|
||||
|
||||
|
||||
@pytest.mark.skip()
|
||||
def test_flatten_hdf():
|
||||
from nwb_linkml.maps.hdf5 import flatten_hdf
|
||||
def test_dependencies_hardlink(nwb_file):
|
||||
"""
|
||||
Test that hardlinks are resolved (eg. from /processing/ecephys/LFP/ElectricalSeries/electrodes
|
||||
to /acquisition/ElectricalSeries/electrodes
|
||||
Args:
|
||||
nwb_file:
|
||||
|
||||
path = "/Users/jonny/Dropbox/lab/p2p_ld/data/nwb/sub-738651046_ses-760693773.nwb"
|
||||
import h5py
|
||||
Returns:
|
||||
|
||||
h5f = h5py.File(path)
|
||||
flat = flatten_hdf(h5f)
|
||||
assert not any(["specifications" in v.path for v in flat.values()])
|
||||
pdb.set_trace()
|
||||
raise NotImplementedError("Just a stub for local testing for now, finish me!")
|
||||
"""
|
||||
parent = "/processing/ecephys/LFP/ElectricalSeries"
|
||||
source = "/processing/ecephys/LFP/ElectricalSeries/electrodes"
|
||||
target = "/acquisition/ElectricalSeries/electrodes"
|
||||
|
||||
# assert that the hardlink exists in the test file
|
||||
with h5py.File(str(nwb_file), "r") as h5f:
|
||||
node = h5f.get(source)
|
||||
linked_node = resolve_hardlink(node)
|
||||
assert linked_node == target
|
||||
|
||||
graph = hdf_dependency_graph(nwb_file)
|
||||
# the parent should link to the target as a child
|
||||
assert (parent, target) in graph.edges([parent])
|
||||
assert graph.edges[parent, target]["label"] == "child"
|
||||
|
||||
|
||||
@pytest.mark.dev
|
||||
def test_dependency_graph_images(nwb_file, tmp_output_dir):
|
||||
"""
|
||||
Generate images of the dependency graph
|
||||
"""
|
||||
graph = hdf_dependency_graph(nwb_file)
|
||||
A_unfiltered = nx.nx_agraph.to_agraph(graph)
|
||||
A_unfiltered.draw(tmp_output_dir / "test_nwb_unfiltered.png", prog="dot")
|
||||
graph = filter_dependency_graph(graph)
|
||||
A_filtered = nx.nx_agraph.to_agraph(graph)
|
||||
A_filtered.draw(tmp_output_dir / "test_nwb_filtered.png", prog="dot")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dset",
|
||||
[
|
||||
{"name": "aibs.nwb", "source": "sub-738651046_ses-760693773.nwb"},
|
||||
{
|
||||
"name": "aibs_ecephys.nwb",
|
||||
"source": "sub-738651046_ses-760693773_probe-769322820_ecephys.nwb",
|
||||
},
|
||||
],
|
||||
)
|
||||
@pytest.mark.dev
|
||||
def test_make_truncated_datasets(tmp_output_dir, data_dir, dset):
|
||||
input_file = tmp_output_dir / dset["source"]
|
||||
output_file = data_dir / dset["name"]
|
||||
if not input_file.exists():
|
||||
return
|
||||
|
||||
truncate_file(input_file, output_file, 10)
|
||||
|
|
110
nwb_linkml/tests/test_io/test_io_nwb.py
Normal file
110
nwb_linkml/tests/test_io/test_io_nwb.py
Normal file
|
@ -0,0 +1,110 @@
|
|||
"""
|
||||
Placeholder test module to test reading from pynwb-generated NWB file
|
||||
"""
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from numpydantic.interface.hdf5 import H5Proxy
|
||||
from pydantic import BaseModel
|
||||
from pynwb import NWBHDF5IO
|
||||
from pynwb import NWBFile as PyNWBFile
|
||||
|
||||
from nwb_linkml.io.hdf5 import HDF5IO
|
||||
from nwb_models.models import NWBFile
|
||||
|
||||
|
||||
def test_read_from_nwbfile(nwb_file):
|
||||
"""
|
||||
Read data from a pynwb HDF5 NWB file
|
||||
|
||||
Placeholder that just ensures that reads work and all pydantic models validate,
|
||||
testing of correctness of read will happen elsewhere.
|
||||
"""
|
||||
res = HDF5IO(nwb_file).read()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def read_nwbfile(nwb_file) -> NWBFile:
|
||||
res = HDF5IO(nwb_file).read()
|
||||
return res
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def read_pynwb(nwb_file) -> PyNWBFile:
|
||||
nwbf = NWBHDF5IO(nwb_file, "r")
|
||||
res = nwbf.read()
|
||||
yield res
|
||||
nwbf.close()
|
||||
|
||||
|
||||
def _compare_attrs(model: BaseModel, pymodel: object):
|
||||
for field, value in model.model_dump().items():
|
||||
if isinstance(value, (dict, H5Proxy)):
|
||||
continue
|
||||
if hasattr(pymodel, field):
|
||||
pynwb_val = getattr(pymodel, field)
|
||||
if isinstance(pynwb_val, list):
|
||||
if isinstance(pynwb_val[0], datetime):
|
||||
# need to normalize UTC numpy.datetime64 with datetime with tz
|
||||
continue
|
||||
assert all([val == pval for val, pval in zip(value, pynwb_val)])
|
||||
else:
|
||||
if not pynwb_val:
|
||||
# pynwb instantiates some stuff as empty dicts where we use ``None``
|
||||
assert bool(pynwb_val) == bool(value)
|
||||
else:
|
||||
assert value == pynwb_val
|
||||
|
||||
|
||||
def test_nwbfile_base(read_nwbfile, read_pynwb):
|
||||
"""
|
||||
Base attributes on top-level nwbfile are correct
|
||||
"""
|
||||
_compare_attrs(read_nwbfile, read_pynwb)
|
||||
|
||||
|
||||
def test_timeseries(read_nwbfile, read_pynwb):
|
||||
py_acq = read_pynwb.get_acquisition("test_timeseries")
|
||||
acq = read_nwbfile.acquisition["test_timeseries"]
|
||||
_compare_attrs(acq, py_acq)
|
||||
# data and timeseries should be equal
|
||||
assert np.array_equal(acq.data[:], py_acq.data[:])
|
||||
assert np.array_equal(acq.timestamps[:], py_acq.timestamps[:])
|
||||
|
||||
|
||||
def test_position(read_nwbfile, read_pynwb):
|
||||
trials = read_nwbfile.intervals.trials[:]
|
||||
py_trials = read_pynwb.trials.to_dataframe()
|
||||
pd.testing.assert_frame_equal(py_trials, trials)
|
||||
|
||||
spatial = read_nwbfile.processing["behavior"].Position.SpatialSeries
|
||||
py_spatial = read_pynwb.processing["behavior"]["Position"]["SpatialSeries"]
|
||||
_compare_attrs(spatial, py_spatial)
|
||||
assert np.array_equal(spatial[:], py_spatial.data[:])
|
||||
assert np.array_equal(spatial.timestamps[:], py_spatial.timestamps[:])
|
||||
|
||||
|
||||
def test_ecephys(read_nwbfile, read_pynwb):
|
||||
pass
|
||||
|
||||
|
||||
def test_units(read_nwbfile, read_pynwb):
|
||||
pass
|
||||
|
||||
|
||||
def test_icephys(read_nwbfile, read_pynwb):
|
||||
pass
|
||||
|
||||
|
||||
def test_ca_imaging(read_nwbfile, read_pynwb):
|
||||
pass
|
||||
|
||||
|
||||
def test_read_from_yaml(nwb_file):
|
||||
"""
|
||||
Read data from a yaml-fied NWB file
|
||||
"""
|
||||
pass
|
|
@ -1 +1,3 @@
|
|||
# nwb-models
|
||||
|
||||
(README forthcoming, for now see [`nwb-linkml`](https://pypi.org/project/nwb-linkml))
|
|
@ -1,6 +1,6 @@
|
|||
[project]
|
||||
name = "nwb-models"
|
||||
version = "0.1.0"
|
||||
version = "0.2.0"
|
||||
description = "Pydantic/LinkML models for Neurodata Without Borders"
|
||||
authors = [
|
||||
{name = "sneakers-the-rat", email = "sneakers-the-rat@protonmail.com"},
|
||||
|
|
|
@ -1 +0,0 @@
|
|||
from .pydantic.core.v2_7_0.namespace import *
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -28,7 +28,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -47,6 +47,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -21,7 +21,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -40,6 +40,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -38,7 +38,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -57,6 +57,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -20,7 +20,12 @@ from pydantic import (
|
|||
)
|
||||
|
||||
from ...core.v2_2_0.core_nwb_base import TimeSeries
|
||||
from ...hdmf_common.v1_1_0.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_0.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -31,7 +36,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -50,6 +55,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -127,7 +163,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
tags: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -136,7 +172,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags_index: Named[Optional[VectorIndex]] = Field(
|
||||
tags_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for tags.""",
|
||||
json_schema_extra={
|
||||
|
@ -151,7 +187,7 @@ class TimeIntervals(DynamicTable):
|
|||
timeseries: Optional[TimeIntervalsTimeseries] = Field(
|
||||
None, description="""An index into a TimeSeries object."""
|
||||
)
|
||||
timeseries_index: Named[Optional[VectorIndex]] = Field(
|
||||
timeseries_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for timeseries.""",
|
||||
json_schema_extra={
|
||||
|
@ -168,14 +204,11 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -24,7 +24,12 @@ from ...core.v2_2_0.core_nwb_icephys import IntracellularElectrode, SweepTable
|
|||
from ...core.v2_2_0.core_nwb_misc import Units
|
||||
from ...core.v2_2_0.core_nwb_ogen import OptogeneticStimulusSite
|
||||
from ...core.v2_2_0.core_nwb_ophys import ImagingPlane
|
||||
from ...hdmf_common.v1_1_0.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_0.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -35,7 +40,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -54,6 +59,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -464,7 +500,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_x: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -473,7 +509,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_y: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -482,7 +518,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_z: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -491,7 +527,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
reference: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -505,14 +541,11 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -26,7 +26,12 @@ from ...core.v2_2_0.core_nwb_base import (
|
|||
TimeSeriesSync,
|
||||
)
|
||||
from ...core.v2_2_0.core_nwb_device import Device
|
||||
from ...hdmf_common.v1_1_0.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_0.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -37,7 +42,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -56,6 +61,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -897,14 +933,11 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -84,17 +115,16 @@ class GrayscaleImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {"array": {"dimensions": [{"alias": "x"}, {"alias": "y"}]}}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBImage(Image):
|
||||
|
@ -107,17 +137,24 @@ class RGBImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 3 r_g_b"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b", "exact_cardinality": 3},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBAImage(Image):
|
||||
|
@ -130,17 +167,24 @@ class RGBAImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 4 r_g_b_a"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b_a", "exact_cardinality": 4},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class ImageSeries(TimeSeries):
|
||||
|
|
|
@ -24,6 +24,7 @@ from ...core.v2_2_0.core_nwb_ecephys import ElectrodeGroup
|
|||
from ...hdmf_common.v1_1_0.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
DynamicTableRegion,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
@ -37,7 +38,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -56,6 +57,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -443,14 +475,11 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
@ -466,7 +495,7 @@ class Units(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field("Units", json_schema_extra={"linkml_meta": {"ifabsent": "string(Units)"}})
|
||||
spike_times_index: Named[Optional[VectorIndex]] = Field(
|
||||
spike_times_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into the spike_times dataset.""",
|
||||
json_schema_extra={
|
||||
|
@ -481,7 +510,7 @@ class Units(DynamicTable):
|
|||
spike_times: Optional[UnitsSpikeTimes] = Field(
|
||||
None, description="""Spike times for each unit."""
|
||||
)
|
||||
obs_intervals_index: Named[Optional[VectorIndex]] = Field(
|
||||
obs_intervals_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into the obs_intervals dataset.""",
|
||||
json_schema_extra={
|
||||
|
@ -493,7 +522,7 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
obs_intervals: Optional[VectorData[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
|
@ -509,7 +538,7 @@ class Units(DynamicTable):
|
|||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
electrodes_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into electrodes.""",
|
||||
json_schema_extra={
|
||||
|
@ -521,7 +550,7 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
electrodes: Named[Optional[DynamicTableRegion]] = Field(
|
||||
electrodes: Optional[Named[DynamicTableRegion]] = Field(
|
||||
None,
|
||||
description="""Electrode that each spike unit came from, specified using a DynamicTableRegion.""",
|
||||
json_schema_extra={
|
||||
|
@ -536,16 +565,16 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
waveform_mean: Optional[
|
||||
VectorData[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
waveform_sd: Optional[
|
||||
VectorData[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
|
@ -557,14 +586,11 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -28,7 +28,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -47,6 +47,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -39,7 +39,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -58,6 +58,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -31,7 +31,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -50,6 +50,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -166,17 +197,16 @@ class RetinotopyImage(GrayscaleImage):
|
|||
)
|
||||
field_of_view: List[float] = Field(..., description="""Size of viewing area, in meters.""")
|
||||
format: str = Field(..., description="""Format of image. Right now only 'raw' is supported.""")
|
||||
value: Optional[NDArray[Shape["* x, * y"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {"array": {"dimensions": [{"alias": "x"}, {"alias": "y"}]}}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class ImagingRetinotopy(NWBDataInterface):
|
||||
|
@ -204,7 +234,7 @@ class ImagingRetinotopy(NWBDataInterface):
|
|||
}
|
||||
},
|
||||
)
|
||||
axis_1_power_map: Named[Optional[AxisMap]] = Field(
|
||||
axis_1_power_map: Optional[Named[AxisMap]] = Field(
|
||||
None,
|
||||
description="""Power response on the first measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.""",
|
||||
json_schema_extra={
|
||||
|
@ -228,7 +258,7 @@ class ImagingRetinotopy(NWBDataInterface):
|
|||
}
|
||||
},
|
||||
)
|
||||
axis_2_power_map: Named[Optional[AxisMap]] = Field(
|
||||
axis_2_power_map: Optional[Named[AxisMap]] = Field(
|
||||
None,
|
||||
description="""Power response to stimulus on the second measured axis.""",
|
||||
json_schema_extra={
|
||||
|
@ -306,17 +336,16 @@ class ImagingRetinotopyFocalDepthImage(RetinotopyImage):
|
|||
)
|
||||
field_of_view: List[float] = Field(..., description="""Size of viewing area, in meters.""")
|
||||
format: str = Field(..., description="""Format of image. Right now only 'raw' is supported.""")
|
||||
value: Optional[NDArray[Shape["* x, * y"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {"array": {"dimensions": [{"alias": "x"}, {"alias": "y"}]}}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
# Model rebuild
|
||||
|
|
|
@ -149,7 +149,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -168,6 +168,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -28,7 +28,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -47,6 +47,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -21,7 +21,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -40,6 +40,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -38,7 +38,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -57,6 +57,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -20,7 +20,12 @@ from pydantic import (
|
|||
)
|
||||
|
||||
from ...core.v2_2_1.core_nwb_base import TimeSeries
|
||||
from ...hdmf_common.v1_1_2.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_2.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -31,7 +36,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -50,6 +55,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -127,7 +163,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
tags: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -136,7 +172,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags_index: Named[Optional[VectorIndex]] = Field(
|
||||
tags_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for tags.""",
|
||||
json_schema_extra={
|
||||
|
@ -151,7 +187,7 @@ class TimeIntervals(DynamicTable):
|
|||
timeseries: Optional[TimeIntervalsTimeseries] = Field(
|
||||
None, description="""An index into a TimeSeries object."""
|
||||
)
|
||||
timeseries_index: Named[Optional[VectorIndex]] = Field(
|
||||
timeseries_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for timeseries.""",
|
||||
json_schema_extra={
|
||||
|
@ -168,14 +204,11 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -24,7 +24,12 @@ from ...core.v2_2_1.core_nwb_icephys import IntracellularElectrode, SweepTable
|
|||
from ...core.v2_2_1.core_nwb_misc import Units
|
||||
from ...core.v2_2_1.core_nwb_ogen import OptogeneticStimulusSite
|
||||
from ...core.v2_2_1.core_nwb_ophys import ImagingPlane
|
||||
from ...hdmf_common.v1_1_2.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_2.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -35,7 +40,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -54,6 +59,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -464,7 +500,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_x: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -473,7 +509,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_y: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -482,7 +518,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_z: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -491,7 +527,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
reference: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -505,14 +541,11 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -26,7 +26,12 @@ from ...core.v2_2_1.core_nwb_base import (
|
|||
TimeSeriesSync,
|
||||
)
|
||||
from ...core.v2_2_1.core_nwb_device import Device
|
||||
from ...hdmf_common.v1_1_2.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_2.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -37,7 +42,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -56,6 +61,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -897,14 +933,11 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -84,17 +115,16 @@ class GrayscaleImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {"array": {"dimensions": [{"alias": "x"}, {"alias": "y"}]}}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBImage(Image):
|
||||
|
@ -107,17 +137,24 @@ class RGBImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 3 r_g_b"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b", "exact_cardinality": 3},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBAImage(Image):
|
||||
|
@ -130,17 +167,24 @@ class RGBAImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 4 r_g_b_a"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b_a", "exact_cardinality": 4},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class ImageSeries(TimeSeries):
|
||||
|
|
|
@ -24,6 +24,7 @@ from ...core.v2_2_1.core_nwb_ecephys import ElectrodeGroup
|
|||
from ...hdmf_common.v1_1_2.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
DynamicTableRegion,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
@ -37,7 +38,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -56,6 +57,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -443,14 +475,11 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
@ -466,7 +495,7 @@ class Units(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field("Units", json_schema_extra={"linkml_meta": {"ifabsent": "string(Units)"}})
|
||||
spike_times_index: Named[Optional[VectorIndex]] = Field(
|
||||
spike_times_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into the spike_times dataset.""",
|
||||
json_schema_extra={
|
||||
|
@ -481,7 +510,7 @@ class Units(DynamicTable):
|
|||
spike_times: Optional[UnitsSpikeTimes] = Field(
|
||||
None, description="""Spike times for each unit."""
|
||||
)
|
||||
obs_intervals_index: Named[Optional[VectorIndex]] = Field(
|
||||
obs_intervals_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into the obs_intervals dataset.""",
|
||||
json_schema_extra={
|
||||
|
@ -493,7 +522,7 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
obs_intervals: Optional[VectorData[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
|
@ -509,7 +538,7 @@ class Units(DynamicTable):
|
|||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
electrodes_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into electrodes.""",
|
||||
json_schema_extra={
|
||||
|
@ -521,7 +550,7 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
electrodes: Named[Optional[DynamicTableRegion]] = Field(
|
||||
electrodes: Optional[Named[DynamicTableRegion]] = Field(
|
||||
None,
|
||||
description="""Electrode that each spike unit came from, specified using a DynamicTableRegion.""",
|
||||
json_schema_extra={
|
||||
|
@ -536,16 +565,16 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
waveform_mean: Optional[
|
||||
VectorData[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
waveform_sd: Optional[
|
||||
VectorData[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
|
@ -557,14 +586,11 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -28,7 +28,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -47,6 +47,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -39,7 +39,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -58,6 +58,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -31,7 +31,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -50,6 +50,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -166,17 +197,16 @@ class RetinotopyImage(GrayscaleImage):
|
|||
)
|
||||
field_of_view: List[float] = Field(..., description="""Size of viewing area, in meters.""")
|
||||
format: str = Field(..., description="""Format of image. Right now only 'raw' is supported.""")
|
||||
value: Optional[NDArray[Shape["* x, * y"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {"array": {"dimensions": [{"alias": "x"}, {"alias": "y"}]}}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class ImagingRetinotopy(NWBDataInterface):
|
||||
|
@ -204,7 +234,7 @@ class ImagingRetinotopy(NWBDataInterface):
|
|||
}
|
||||
},
|
||||
)
|
||||
axis_1_power_map: Named[Optional[AxisMap]] = Field(
|
||||
axis_1_power_map: Optional[Named[AxisMap]] = Field(
|
||||
None,
|
||||
description="""Power response on the first measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.""",
|
||||
json_schema_extra={
|
||||
|
@ -228,7 +258,7 @@ class ImagingRetinotopy(NWBDataInterface):
|
|||
}
|
||||
},
|
||||
)
|
||||
axis_2_power_map: Named[Optional[AxisMap]] = Field(
|
||||
axis_2_power_map: Optional[Named[AxisMap]] = Field(
|
||||
None,
|
||||
description="""Power response to stimulus on the second measured axis.""",
|
||||
json_schema_extra={
|
||||
|
@ -306,17 +336,16 @@ class ImagingRetinotopyFocalDepthImage(RetinotopyImage):
|
|||
)
|
||||
field_of_view: List[float] = Field(..., description="""Size of viewing area, in meters.""")
|
||||
format: str = Field(..., description="""Format of image. Right now only 'raw' is supported.""")
|
||||
value: Optional[NDArray[Shape["* x, * y"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {"array": {"dimensions": [{"alias": "x"}, {"alias": "y"}]}}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
# Model rebuild
|
||||
|
|
|
@ -149,7 +149,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -168,6 +168,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -28,7 +28,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -47,6 +47,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -21,7 +21,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -40,6 +40,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -38,7 +38,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -57,6 +57,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -20,7 +20,12 @@ from pydantic import (
|
|||
)
|
||||
|
||||
from ...core.v2_2_2.core_nwb_base import TimeSeries
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -31,7 +36,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -50,6 +55,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -127,7 +163,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
tags: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -136,7 +172,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags_index: Named[Optional[VectorIndex]] = Field(
|
||||
tags_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for tags.""",
|
||||
json_schema_extra={
|
||||
|
@ -151,7 +187,7 @@ class TimeIntervals(DynamicTable):
|
|||
timeseries: Optional[TimeIntervalsTimeseries] = Field(
|
||||
None, description="""An index into a TimeSeries object."""
|
||||
)
|
||||
timeseries_index: Named[Optional[VectorIndex]] = Field(
|
||||
timeseries_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for timeseries.""",
|
||||
json_schema_extra={
|
||||
|
@ -168,14 +204,11 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -24,7 +24,12 @@ from ...core.v2_2_2.core_nwb_icephys import IntracellularElectrode, SweepTable
|
|||
from ...core.v2_2_2.core_nwb_misc import Units
|
||||
from ...core.v2_2_2.core_nwb_ogen import OptogeneticStimulusSite
|
||||
from ...core.v2_2_2.core_nwb_ophys import ImagingPlane
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -35,7 +40,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -54,6 +59,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -464,7 +500,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_x: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -473,7 +509,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_y: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -482,7 +518,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_z: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -491,7 +527,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
reference: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -505,14 +541,11 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -26,7 +26,12 @@ from ...core.v2_2_2.core_nwb_base import (
|
|||
TimeSeriesSync,
|
||||
)
|
||||
from ...core.v2_2_2.core_nwb_device import Device
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -37,7 +42,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -56,6 +61,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -897,14 +933,11 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -84,17 +115,16 @@ class GrayscaleImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {"array": {"dimensions": [{"alias": "x"}, {"alias": "y"}]}}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBImage(Image):
|
||||
|
@ -107,17 +137,24 @@ class RGBImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 3 r_g_b"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b", "exact_cardinality": 3},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBAImage(Image):
|
||||
|
@ -130,17 +167,24 @@ class RGBAImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 4 r_g_b_a"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b_a", "exact_cardinality": 4},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class ImageSeries(TimeSeries):
|
||||
|
|
|
@ -24,6 +24,7 @@ from ...core.v2_2_2.core_nwb_ecephys import ElectrodeGroup
|
|||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
DynamicTableRegion,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
@ -37,7 +38,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -56,6 +57,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -443,14 +475,11 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
@ -466,7 +495,7 @@ class Units(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field("Units", json_schema_extra={"linkml_meta": {"ifabsent": "string(Units)"}})
|
||||
spike_times_index: Named[Optional[VectorIndex]] = Field(
|
||||
spike_times_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into the spike_times dataset.""",
|
||||
json_schema_extra={
|
||||
|
@ -481,7 +510,7 @@ class Units(DynamicTable):
|
|||
spike_times: Optional[UnitsSpikeTimes] = Field(
|
||||
None, description="""Spike times for each unit."""
|
||||
)
|
||||
obs_intervals_index: Named[Optional[VectorIndex]] = Field(
|
||||
obs_intervals_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into the obs_intervals dataset.""",
|
||||
json_schema_extra={
|
||||
|
@ -493,7 +522,7 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
obs_intervals: Optional[VectorData[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
|
@ -509,7 +538,7 @@ class Units(DynamicTable):
|
|||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
electrodes_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into electrodes.""",
|
||||
json_schema_extra={
|
||||
|
@ -521,7 +550,7 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
electrodes: Named[Optional[DynamicTableRegion]] = Field(
|
||||
electrodes: Optional[Named[DynamicTableRegion]] = Field(
|
||||
None,
|
||||
description="""Electrode that each spike unit came from, specified using a DynamicTableRegion.""",
|
||||
json_schema_extra={
|
||||
|
@ -536,16 +565,16 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
waveform_mean: Optional[
|
||||
VectorData[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
waveform_sd: Optional[
|
||||
VectorData[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
|
@ -557,14 +586,11 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -28,7 +28,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -47,6 +47,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -39,7 +39,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -58,6 +58,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -152,7 +152,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -171,6 +171,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -28,7 +28,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -47,6 +47,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -21,7 +21,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -40,6 +40,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -38,7 +38,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -57,6 +57,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -20,7 +20,12 @@ from pydantic import (
|
|||
)
|
||||
|
||||
from ...core.v2_2_4.core_nwb_base import TimeSeries
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -31,7 +36,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -50,6 +55,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -127,7 +163,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
tags: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -136,7 +172,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags_index: Named[Optional[VectorIndex]] = Field(
|
||||
tags_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for tags.""",
|
||||
json_schema_extra={
|
||||
|
@ -151,7 +187,7 @@ class TimeIntervals(DynamicTable):
|
|||
timeseries: Optional[TimeIntervalsTimeseries] = Field(
|
||||
None, description="""An index into a TimeSeries object."""
|
||||
)
|
||||
timeseries_index: Named[Optional[VectorIndex]] = Field(
|
||||
timeseries_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for timeseries.""",
|
||||
json_schema_extra={
|
||||
|
@ -168,14 +204,11 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -25,7 +25,12 @@ from ...core.v2_2_4.core_nwb_icephys import IntracellularElectrode, SweepTable
|
|||
from ...core.v2_2_4.core_nwb_misc import Units
|
||||
from ...core.v2_2_4.core_nwb_ogen import OptogeneticStimulusSite
|
||||
from ...core.v2_2_4.core_nwb_ophys import ImagingPlane
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -36,7 +41,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -55,6 +60,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -440,7 +476,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_x: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -449,7 +485,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_y: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -458,7 +494,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_z: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -467,7 +503,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
reference: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -481,14 +517,11 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -26,7 +26,12 @@ from ...core.v2_2_4.core_nwb_base import (
|
|||
TimeSeriesSync,
|
||||
)
|
||||
from ...core.v2_2_4.core_nwb_device import Device
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -37,7 +42,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -56,6 +61,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -897,14 +933,11 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -84,17 +115,16 @@ class GrayscaleImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {"array": {"dimensions": [{"alias": "x"}, {"alias": "y"}]}}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBImage(Image):
|
||||
|
@ -107,17 +137,24 @@ class RGBImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 3 r_g_b"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b", "exact_cardinality": 3},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBAImage(Image):
|
||||
|
@ -130,17 +167,24 @@ class RGBAImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 4 r_g_b_a"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b_a", "exact_cardinality": 4},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class ImageSeries(TimeSeries):
|
||||
|
|
|
@ -24,6 +24,7 @@ from ...core.v2_2_4.core_nwb_ecephys import ElectrodeGroup
|
|||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
DynamicTableRegion,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
@ -37,7 +38,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -56,6 +57,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -443,14 +475,11 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
@ -466,7 +495,7 @@ class Units(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field("Units", json_schema_extra={"linkml_meta": {"ifabsent": "string(Units)"}})
|
||||
spike_times_index: Named[Optional[VectorIndex]] = Field(
|
||||
spike_times_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into the spike_times dataset.""",
|
||||
json_schema_extra={
|
||||
|
@ -481,7 +510,7 @@ class Units(DynamicTable):
|
|||
spike_times: Optional[UnitsSpikeTimes] = Field(
|
||||
None, description="""Spike times for each unit."""
|
||||
)
|
||||
obs_intervals_index: Named[Optional[VectorIndex]] = Field(
|
||||
obs_intervals_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into the obs_intervals dataset.""",
|
||||
json_schema_extra={
|
||||
|
@ -493,7 +522,7 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
obs_intervals: Optional[VectorData[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
|
@ -509,7 +538,7 @@ class Units(DynamicTable):
|
|||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
electrodes_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into electrodes.""",
|
||||
json_schema_extra={
|
||||
|
@ -521,7 +550,7 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
electrodes: Named[Optional[DynamicTableRegion]] = Field(
|
||||
electrodes: Optional[Named[DynamicTableRegion]] = Field(
|
||||
None,
|
||||
description="""Electrode that each spike unit came from, specified using a DynamicTableRegion.""",
|
||||
json_schema_extra={
|
||||
|
@ -536,16 +565,16 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
waveform_mean: Optional[
|
||||
VectorData[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
waveform_sd: Optional[
|
||||
VectorData[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
|
@ -557,14 +586,11 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -28,7 +28,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -47,6 +47,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -31,6 +31,7 @@ from ...core.v2_2_4.core_nwb_image import ImageSeries, ImageSeriesExternalFile
|
|||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
DynamicTableRegion,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
@ -44,7 +45,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -63,6 +64,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -322,7 +354,7 @@ class PlaneSegmentation(DynamicTable):
|
|||
None,
|
||||
description="""ROI masks for each ROI. Each image mask is the size of the original imaging plane (or volume) and members of the ROI are finite non-zero.""",
|
||||
)
|
||||
pixel_mask_index: Named[Optional[VectorIndex]] = Field(
|
||||
pixel_mask_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into pixel_mask.""",
|
||||
json_schema_extra={
|
||||
|
@ -338,7 +370,7 @@ class PlaneSegmentation(DynamicTable):
|
|||
None,
|
||||
description="""Pixel masks for each ROI: a list of indices and weights for the ROI. Pixel masks are concatenated and parsing of this dataset is maintained by the PlaneSegmentation""",
|
||||
)
|
||||
voxel_mask_index: Named[Optional[VectorIndex]] = Field(
|
||||
voxel_mask_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index into voxel_mask.""",
|
||||
json_schema_extra={
|
||||
|
@ -373,14 +405,11 @@ class PlaneSegmentation(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -159,7 +159,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -178,6 +178,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -28,7 +28,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -47,6 +47,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -21,7 +21,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -40,6 +40,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -38,7 +38,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -57,6 +57,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
|
|
@ -20,7 +20,12 @@ from pydantic import (
|
|||
)
|
||||
|
||||
from ...core.v2_2_5.core_nwb_base import TimeSeries
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -31,7 +36,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -50,6 +55,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -127,7 +163,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
tags: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -136,7 +172,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags_index: Named[Optional[VectorIndex]] = Field(
|
||||
tags_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for tags.""",
|
||||
json_schema_extra={
|
||||
|
@ -151,7 +187,7 @@ class TimeIntervals(DynamicTable):
|
|||
timeseries: Optional[TimeIntervalsTimeseries] = Field(
|
||||
None, description="""An index into a TimeSeries object."""
|
||||
)
|
||||
timeseries_index: Named[Optional[VectorIndex]] = Field(
|
||||
timeseries_index: Optional[Named[VectorIndex]] = Field(
|
||||
None,
|
||||
description="""Index for timeseries.""",
|
||||
json_schema_extra={
|
||||
|
@ -168,14 +204,11 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -25,7 +25,12 @@ from ...core.v2_2_5.core_nwb_icephys import IntracellularElectrode, SweepTable
|
|||
from ...core.v2_2_5.core_nwb_misc import Units
|
||||
from ...core.v2_2_5.core_nwb_ogen import OptogeneticStimulusSite
|
||||
from ...core.v2_2_5.core_nwb_ophys import ImagingPlane
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -36,7 +41,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -55,6 +60,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -440,7 +476,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_x: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -449,7 +485,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_y: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -458,7 +494,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
rel_z: Optional[VectorData[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -467,7 +503,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
reference: Optional[VectorData[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -481,14 +517,11 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -26,7 +26,12 @@ from ...core.v2_2_5.core_nwb_base import (
|
|||
TimeSeriesSync,
|
||||
)
|
||||
from ...core.v2_2_5.core_nwb_device import Device
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import DynamicTable, VectorData, VectorIndex
|
||||
from ...hdmf_common.v1_1_3.hdmf_common_table import (
|
||||
DynamicTable,
|
||||
ElementIdentifiers,
|
||||
VectorData,
|
||||
VectorIndex,
|
||||
)
|
||||
|
||||
|
||||
metamodel_version = "None"
|
||||
|
@ -37,7 +42,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -56,6 +61,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -897,14 +933,11 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
id: ElementIdentifiers = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
)
|
||||
vector_data: Optional[List[VectorData]] = Field(
|
||||
None, description="""Vector columns of this dynamic table."""
|
||||
)
|
||||
vector_index: Optional[List[VectorIndex]] = Field(
|
||||
None, description="""Indices for the vector columns of this dynamic table."""
|
||||
)
|
||||
|
|
|
@ -22,7 +22,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
model_config = ConfigDict(
|
||||
validate_assignment=True,
|
||||
validate_default=True,
|
||||
extra="forbid",
|
||||
extra="allow",
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
strict=False,
|
||||
|
@ -41,6 +41,37 @@ class ConfiguredBaseModel(BaseModel):
|
|||
else:
|
||||
raise KeyError("No value or data field to index from")
|
||||
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def coerce_value(cls, v: Any, handler) -> Any:
|
||||
"""Try to rescue instantiation by using the value field"""
|
||||
try:
|
||||
return handler(v)
|
||||
except Exception as e1:
|
||||
try:
|
||||
return handler(v.value)
|
||||
except AttributeError:
|
||||
try:
|
||||
return handler(v["value"])
|
||||
except (IndexError, KeyError, TypeError):
|
||||
raise e1
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
@classmethod
|
||||
def coerce_subclass(cls, v: Any, info) -> Any:
|
||||
"""Recast parent classes into child classes"""
|
||||
if isinstance(v, BaseModel):
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
while hasattr(annotation, "__args__"):
|
||||
annotation = annotation.__args__[0]
|
||||
try:
|
||||
if issubclass(annotation, type(v)) and annotation is not type(v):
|
||||
v = annotation(**{**v.__dict__, **v.__pydantic_extra__})
|
||||
except TypeError:
|
||||
# fine, annotation is a non-class type like a TypeVar
|
||||
pass
|
||||
return v
|
||||
|
||||
|
||||
class LinkMLMeta(RootModel):
|
||||
root: Dict[str, Any] = {}
|
||||
|
@ -84,17 +115,16 @@ class GrayscaleImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {"array": {"dimensions": [{"alias": "x"}, {"alias": "y"}]}}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBImage(Image):
|
||||
|
@ -107,17 +137,24 @@ class RGBImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 3 r_g_b"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b", "exact_cardinality": 3},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class RGBAImage(Image):
|
||||
|
@ -130,17 +167,24 @@ class RGBAImage(Image):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
value: Optional[NDArray[Shape["* x, * y, 4 r_g_b_a"], float]] = Field(
|
||||
None,
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "x"},
|
||||
{"alias": "y"},
|
||||
{"alias": "r_g_b_a", "exact_cardinality": 4},
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
resolution: Optional[float] = Field(
|
||||
None, description="""Pixel resolution of the image, in pixels per centimeter."""
|
||||
)
|
||||
description: Optional[str] = Field(None, description="""Description of the image.""")
|
||||
value: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], float],
|
||||
NDArray[Shape["* x, * y, 4 r_g_b_a"], float],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
|
||||
class ImageSeries(TimeSeries):
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Reference in a new issue