from typing import Tuple import numpy as np import pytest from nwb_models.models import ( Device, DynamicTableRegion, ElectricalSeries, ElectrodeGroup, ExtracellularEphysElectrodes, IntracellularElectrode, IntracellularElectrodesTable, IntracellularRecordingsTable, IntracellularResponsesTable, IntracellularStimuliTable, TimeSeriesReferenceVectorData, Units, VoltageClampSeries, VoltageClampSeriesData, VoltageClampStimulusSeries, VoltageClampStimulusSeriesData, ) @pytest.fixture() def electrical_series() -> Tuple["ElectricalSeries", "ExtracellularEphysElectrodes"]: """ Demo electrical series with adjoining electrodes """ n_electrodes = 5 n_times = 100 data = np.arange(0, n_electrodes * n_times).reshape(n_times, n_electrodes).astype(float) timestamps = np.linspace(0, 1, n_times) device = Device(name="my electrode") # electrode group is the physical description of the electrodes electrode_group = ElectrodeGroup( name="GroupA", device=device, description="an electrode group", location="you know where it is", ) # make electrodes tables electrodes = ExtracellularEphysElectrodes( description="idk these are also electrodes", id=np.arange(0, n_electrodes), x=np.arange(0, n_electrodes).astype(float), y=np.arange(n_electrodes, n_electrodes * 2).astype(float), group=[electrode_group] * n_electrodes, group_name=[electrode_group.name] * n_electrodes, location=[str(i) for i in range(n_electrodes)], extra_column=["sup"] * n_electrodes, ) electrical_series = ElectricalSeries( name="my recording!", electrodes=DynamicTableRegion( table=electrodes, value=np.arange(n_electrodes - 1, -1, step=-1), name="electrodes", description="hey", ), timestamps=timestamps, data=data, ) return electrical_series, electrodes def _ragged_array(n_units: int) -> tuple[list[np.ndarray], np.ndarray]: generator = np.random.default_rng() spike_times = [ np.full(shape=generator.integers(10, 50), fill_value=i, dtype=float) for i in range(n_units) ] spike_idx = [] for i in range(n_units): if i == 0: spike_idx.append(len(spike_times[0])) else: spike_idx.append(len(spike_times[i]) + spike_idx[i - 1]) spike_idx = np.array(spike_idx) return spike_times, spike_idx @pytest.fixture(params=[True, False]) def units(request) -> Tuple[Units, list[np.ndarray], np.ndarray]: """ Test case for units Parameterized by extra_column because pandas likes to pivot dataframes to long when there is only one column and it's not len() == 1 """ spike_times, spike_idx = _ragged_array(24) spike_times_flat = np.concatenate(spike_times) kwargs = { "description": "units!!!!", "spike_times": spike_times_flat, "spike_times_index": spike_idx, } if request.param: kwargs["extra_column"] = ["hey!"] * 24 units = Units(**kwargs) return units, spike_times, spike_idx def _icephys_stimulus_and_response( i: int, electrode: IntracellularElectrode ) -> tuple[VoltageClampStimulusSeries, VoltageClampSeries]: generator = np.random.default_rng() n_samples = generator.integers(20, 50) stimulus = VoltageClampStimulusSeries( name=f"vcss_{i}", data=VoltageClampStimulusSeriesData(value=np.array([i] * n_samples, dtype=float)), stimulus_description=f"{i}", sweep_number=i, electrode=electrode, ) response = VoltageClampSeries( name=f"vcs_{i}", data=VoltageClampSeriesData(value=np.array([i] * n_samples, dtype=float)), stimulus_description=f"{i}", electrode=electrode, ) return stimulus, response @pytest.fixture() def intracellular_recordings_table() -> IntracellularRecordingsTable: n_recordings = 10 generator = np.random.default_rng() device = Device(name="my device") electrode = IntracellularElectrode( name="my_electrode", description="an electrode", device=device ) stims = [] responses = [] for i in range(n_recordings): stim, response = _icephys_stimulus_and_response(i, electrode) stims.append(stim) responses.append(response) electrodes = IntracellularElectrodesTable( name="intracellular_electrodes", electrode=[electrode] * n_recordings ) stimuli = IntracellularStimuliTable( name="intracellular_stimuli", stimulus=TimeSeriesReferenceVectorData( name="stimulus", description="this should be optional", idx_start=np.arange(n_recordings), count=generator.integers(1, 10, (n_recordings,)), timeseries=stims, ), ) responses = IntracellularResponsesTable( name="intracellular_responses", response=TimeSeriesReferenceVectorData( name="response", description="this should be optional", idx_start=np.arange(n_recordings), count=generator.integers(1, 10, (n_recordings,)), timeseries=responses, ), ) recordings_table = IntracellularRecordingsTable( electrodes=electrodes, stimuli=stimuli, responses=responses ) return recordings_table