nwb-linkml/nwb_linkml/tests/test_includes/test_hdmf.py

167 lines
4.7 KiB
Python

from typing import Tuple
import numpy as np
import pytest
# FIXME: Make this just be the output of the provider by patching into import machinery
from nwb_linkml.models.pydantic.core.v2_7_0.namespace import (
Device,
DynamicTableRegion,
ElectricalSeries,
ElectrodeGroup,
ExtracellularEphysElectrodes,
Units,
)
@pytest.fixture()
def electrical_series() -> Tuple["ElectricalSeries", "ExtracellularEphysElectrodes"]:
"""
Demo electrical series with adjoining electrodes
"""
n_electrodes = 5
n_times = 100
data = np.arange(0, n_electrodes * n_times).reshape(n_times, n_electrodes).astype(float)
timestamps = np.linspace(0, 1, n_times)
device = Device(name="my electrode")
# electrode group is the physical description of the electrodes
electrode_group = ElectrodeGroup(
name="GroupA",
device=device,
description="an electrode group",
location="you know where it is",
)
# make electrodes tables
electrodes = ExtracellularEphysElectrodes(
description="idk these are also electrodes",
id=np.arange(0, n_electrodes),
x=np.arange(0, n_electrodes).astype(float),
y=np.arange(n_electrodes, n_electrodes * 2).astype(float),
group=[electrode_group] * n_electrodes,
group_name=[electrode_group.name] * n_electrodes,
location=[str(i) for i in range(n_electrodes)],
extra_column=["sup"] * n_electrodes,
)
electrical_series = ElectricalSeries(
name="my recording!",
electrodes=DynamicTableRegion(
table=electrodes, value=np.arange(0, n_electrodes), name="electrodes", description="hey"
),
timestamps=timestamps,
data=data,
)
return electrical_series, electrodes
@pytest.fixture(params=[True, False])
def units(request) -> Tuple[Units, list[np.ndarray], np.ndarray]:
"""
Test case for units
Parameterized by extra_column because pandas likes to pivot dataframes
to long when there is only one column and it's not len() == 1
"""
n_units = 24
spike_times = [
np.full(shape=np.random.randint(10, 50), fill_value=i, dtype=float) for i in range(n_units)
]
spike_idx = []
for i in range(n_units):
if i == 0:
spike_idx.append(len(spike_times[0]))
else:
spike_idx.append(len(spike_times[i]) + spike_idx[i - 1])
spike_idx = np.array(spike_idx)
spike_times_flat = np.concatenate(spike_times)
kwargs = {
"description": "units!!!!",
"spike_times": spike_times_flat,
"spike_times_index": spike_idx,
}
if request.param:
kwargs["extra_column"] = ["hey!"] * n_units
units = Units(**kwargs)
return units, spike_times, spike_idx
def test_dynamictable_indexing(electrical_series):
"""
Can index values from a dynamictable
"""
series, electrodes = electrical_series
colnames = [
"id",
"x",
"y",
"group",
"group_name",
"location",
"extra_column",
]
dtypes = [
np.dtype("int64"),
np.dtype("float64"),
np.dtype("float64"),
] + ([np.dtype("O")] * 4)
row = electrodes[0]
# successfully get a single row :)
assert row.shape == (1, 7)
assert row.dtypes.values.tolist() == dtypes
assert row.columns.tolist() == colnames
# slice a range of rows
rows = electrodes[0:3]
assert rows.shape == (3, 7)
assert rows.dtypes.values.tolist() == dtypes
assert rows.columns.tolist() == colnames
# get a single column
col = electrodes["y"]
assert all(col == [5, 6, 7, 8, 9])
# get a single cell
val = electrodes[0, "y"]
assert val == 5
val = electrodes[0, 2]
assert val == 5
# get a slice of rows and columns
subsection = electrodes[0:3, 0:3]
assert subsection.shape == (3, 3)
assert subsection.columns.tolist() == colnames[0:3]
assert subsection.dtypes.values.tolist() == dtypes[0:3]
def test_dynamictable_ragged_arrays(units):
"""
Should be able to index ragged arrays using an implicit _index column
Also tests:
- passing arrays directly instead of wrapping in vectordata/index specifically,
if the models in the fixture instantiate then this works
"""
units, spike_times, spike_idx = units
# ensure we don't pivot to long when indexing
assert units[0].shape[0] == 1
# check that we got the indexing boundaries corrunect
# (and that we are forwarding attr calls to the dataframe by accessing shape
for i in range(units.shape[0]):
assert np.all(units.iloc[i, 0] == spike_times[i])
def test_dynamictable_append_column():
pass
def test_dynamictable_append_row():
pass