mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 14:14:27 +00:00
175 lines
5.6 KiB
Python
175 lines
5.6 KiB
Python
"""
|
|
Since NWB doesn't necessarily have a term for a single nwb schema file, we're going
|
|
to call them "schema" objects
|
|
"""
|
|
import pdb
|
|
from typing import Optional, List, TYPE_CHECKING, Type
|
|
from pathlib import Path
|
|
from pydantic import Field, PrivateAttr
|
|
|
|
from nwb_linkml.adapters.adapter import Adapter, BuildResult
|
|
from nwb_linkml.adapters.dataset import DatasetAdapter
|
|
from nwb_linkml.adapters.group import GroupAdapter
|
|
if TYPE_CHECKING:
|
|
from nwb_linkml.adapters.namespaces import NamespacesAdapter
|
|
|
|
from nwb_schema_language import Group, Dataset
|
|
from typing import NamedTuple
|
|
|
|
from linkml_runtime.linkml_model import SchemaDefinition
|
|
|
|
|
|
class SplitSchema(NamedTuple):
|
|
main: BuildResult
|
|
split: Optional[BuildResult]
|
|
|
|
class SchemaAdapter(Adapter):
|
|
"""
|
|
An individual schema file in nwb_schema_language
|
|
"""
|
|
path: Path
|
|
groups: List[Group] = Field(default_factory=list)
|
|
datasets: List[Dataset] = Field(default_factory=list)
|
|
imports: List['SchemaAdapter'] = Field(default_factory=list)
|
|
namespace: Optional[str] = Field(
|
|
None,
|
|
description="""String of containing namespace. Populated by NamespacesAdapter""")
|
|
split: bool = Field(
|
|
False,
|
|
description="Split anonymous subclasses into a separate schema file"
|
|
)
|
|
_created_classes: List[Type[Group | Dataset]] = PrivateAttr(default_factory=list)
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
return '.'.join([self.namespace, self.path.with_suffix('').name])
|
|
|
|
def __repr__(self):
|
|
out_str = '\n' + self.name + '\n'
|
|
out_str += '-'*len(self.name) + '\n'
|
|
if len(self.imports) > 0:
|
|
out_str += "Imports:\n"
|
|
out_str += " " + ', '.join([i.name for i in self.imports]) + '\n'
|
|
|
|
out_str += 'Groups:\n'
|
|
out_str += ' ' + ', '.join([g.neurodata_type_def for g in self.groups])
|
|
out_str += '\n'
|
|
out_str += 'Datasets:\n'
|
|
out_str += ' ' + ', '.join([d.neurodata_type_def for d in self.datasets])
|
|
out_str += "\n"
|
|
|
|
return out_str
|
|
|
|
def build(self) -> BuildResult:
|
|
"""
|
|
Make the LinkML representation for this schema file
|
|
|
|
Things that will be populated later
|
|
- `id` (but need to have a placeholder to instantiate)
|
|
- `version`
|
|
|
|
|
|
"""
|
|
res = BuildResult()
|
|
for dset in self.datasets:
|
|
res += DatasetAdapter(cls=dset).build()
|
|
for group in self.groups:
|
|
res += GroupAdapter(cls=group).build()
|
|
|
|
if len(res.slots) > 0:
|
|
raise RuntimeError('Generated schema in this translation can only have classes, all slots should be attributes within a class')
|
|
|
|
if self.split:
|
|
sch_split = self.split_subclasses(res)
|
|
return sch_split
|
|
|
|
else:
|
|
sch = SchemaDefinition(
|
|
name = self.name,
|
|
id = self.name,
|
|
imports = [i.name for i in self.imports],
|
|
classes=res.classes,
|
|
slots=res.slots,
|
|
types=res.types
|
|
)
|
|
# every schema needs the language elements
|
|
sch.imports.append('nwb.language')
|
|
return BuildResult(schemas=[sch])
|
|
|
|
def split_subclasses(self, classes: BuildResult) -> BuildResult:
|
|
"""
|
|
Split the generated classes into top-level "main" classes and
|
|
nested/anonymous "split" classes.
|
|
|
|
Args:
|
|
classes (BuildResult): A Build result object containing the classes
|
|
for the schema
|
|
|
|
Returns:
|
|
:class:`.SplitSchema`
|
|
"""
|
|
# just split by the presence or absence of __
|
|
main_classes = [c for c in classes.classes if '__' not in c.name]
|
|
split_classes = [c for c in classes.classes if '__' in c.name]
|
|
split_sch_name = '.'.join([self.name, 'include'])
|
|
|
|
|
|
imports = [i.name for i in self.imports]
|
|
imports.append('nwb.language')
|
|
# need to mutually import the two schemas because the subclasses
|
|
# could refer to the main classes
|
|
main_imports = imports
|
|
if len(split_classes)>0:
|
|
main_imports.append(split_sch_name)
|
|
imports.append(self.name)
|
|
main_sch = SchemaDefinition(
|
|
name=self.name,
|
|
id=self.name,
|
|
imports=main_imports,
|
|
classes=main_classes,
|
|
slots=classes.slots,
|
|
types=classes.types
|
|
)
|
|
|
|
split_sch = SchemaDefinition(
|
|
name=split_sch_name,
|
|
id=split_sch_name,
|
|
imports=imports,
|
|
classes=split_classes,
|
|
slots=classes.slots,
|
|
types=classes.types
|
|
)
|
|
if len(split_classes) > 0:
|
|
res = BuildResult(
|
|
schemas=[main_sch, split_sch]
|
|
)
|
|
else:
|
|
res = BuildResult(
|
|
schemas=[main_sch]
|
|
)
|
|
return res
|
|
|
|
|
|
|
|
@property
|
|
def created_classes(self) -> List[Type[Group | Dataset]]:
|
|
if len(self._created_classes) == 0:
|
|
self._created_classes = [t for t in self.walk_types([self.groups, self.datasets], (Group, Dataset)) if t.neurodata_type_def is not None]
|
|
return self._created_classes
|
|
|
|
@property
|
|
def needed_imports(self) -> List[str]:
|
|
"""
|
|
Classes that need to be imported from other namespaces
|
|
|
|
TODO:
|
|
- Need to also check classes used in links/references
|
|
|
|
"""
|
|
type_incs = self.walk_fields(self, ('neurodata_type_inc', 'target_type'))
|
|
|
|
definitions = [c.neurodata_type_def for c in self.created_classes]
|
|
need = [inc for inc in type_incs if inc not in definitions]
|
|
return need
|
|
|
|
|