mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 14:14:27 +00:00
167 lines
4.7 KiB
Python
167 lines
4.7 KiB
Python
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
# FIXME: Make this just be the output of the provider by patching into import machinery
|
|
from nwb_linkml.models.pydantic.core.v2_7_0.namespace import (
|
|
Device,
|
|
DynamicTableRegion,
|
|
ElectricalSeries,
|
|
ElectrodeGroup,
|
|
ExtracellularEphysElectrodes,
|
|
Units,
|
|
)
|
|
|
|
|
|
@pytest.fixture()
|
|
def electrical_series() -> Tuple["ElectricalSeries", "ExtracellularEphysElectrodes"]:
|
|
"""
|
|
Demo electrical series with adjoining electrodes
|
|
"""
|
|
n_electrodes = 5
|
|
n_times = 100
|
|
data = np.arange(0, n_electrodes * n_times).reshape(n_times, n_electrodes).astype(float)
|
|
timestamps = np.linspace(0, 1, n_times)
|
|
|
|
device = Device(name="my electrode")
|
|
|
|
# electrode group is the physical description of the electrodes
|
|
electrode_group = ElectrodeGroup(
|
|
name="GroupA",
|
|
device=device,
|
|
description="an electrode group",
|
|
location="you know where it is",
|
|
)
|
|
|
|
# make electrodes tables
|
|
electrodes = ExtracellularEphysElectrodes(
|
|
description="idk these are also electrodes",
|
|
id=np.arange(0, n_electrodes),
|
|
x=np.arange(0, n_electrodes).astype(float),
|
|
y=np.arange(n_electrodes, n_electrodes * 2).astype(float),
|
|
group=[electrode_group] * n_electrodes,
|
|
group_name=[electrode_group.name] * n_electrodes,
|
|
location=[str(i) for i in range(n_electrodes)],
|
|
extra_column=["sup"] * n_electrodes,
|
|
)
|
|
|
|
electrical_series = ElectricalSeries(
|
|
name="my recording!",
|
|
electrodes=DynamicTableRegion(
|
|
table=electrodes, value=np.arange(0, n_electrodes), name="electrodes", description="hey"
|
|
),
|
|
timestamps=timestamps,
|
|
data=data,
|
|
)
|
|
return electrical_series, electrodes
|
|
|
|
|
|
@pytest.fixture(params=[True, False])
|
|
def units(request) -> Tuple[Units, list[np.ndarray], np.ndarray]:
|
|
"""
|
|
Test case for units
|
|
|
|
Parameterized by extra_column because pandas likes to pivot dataframes
|
|
to long when there is only one column and it's not len() == 1
|
|
"""
|
|
|
|
n_units = 24
|
|
spike_times = [
|
|
np.full(shape=np.random.randint(10, 50), fill_value=i, dtype=float) for i in range(n_units)
|
|
]
|
|
spike_idx = []
|
|
for i in range(n_units):
|
|
if i == 0:
|
|
spike_idx.append(len(spike_times[0]))
|
|
else:
|
|
spike_idx.append(len(spike_times[i]) + spike_idx[i - 1])
|
|
spike_idx = np.array(spike_idx)
|
|
|
|
spike_times_flat = np.concatenate(spike_times)
|
|
|
|
kwargs = {
|
|
"description": "units!!!!",
|
|
"spike_times": spike_times_flat,
|
|
"spike_times_index": spike_idx,
|
|
}
|
|
if request.param:
|
|
kwargs["extra_column"] = ["hey!"] * n_units
|
|
units = Units(**kwargs)
|
|
return units, spike_times, spike_idx
|
|
|
|
|
|
def test_dynamictable_indexing(electrical_series):
|
|
"""
|
|
Can index values from a dynamictable
|
|
"""
|
|
series, electrodes = electrical_series
|
|
|
|
colnames = [
|
|
"id",
|
|
"x",
|
|
"y",
|
|
"group",
|
|
"group_name",
|
|
"location",
|
|
"extra_column",
|
|
]
|
|
dtypes = [
|
|
np.dtype("int64"),
|
|
np.dtype("float64"),
|
|
np.dtype("float64"),
|
|
] + ([np.dtype("O")] * 4)
|
|
|
|
row = electrodes[0]
|
|
# successfully get a single row :)
|
|
assert row.shape == (1, 7)
|
|
assert row.dtypes.values.tolist() == dtypes
|
|
assert row.columns.tolist() == colnames
|
|
|
|
# slice a range of rows
|
|
rows = electrodes[0:3]
|
|
assert rows.shape == (3, 7)
|
|
assert rows.dtypes.values.tolist() == dtypes
|
|
assert rows.columns.tolist() == colnames
|
|
|
|
# get a single column
|
|
col = electrodes["y"]
|
|
assert all(col == [5, 6, 7, 8, 9])
|
|
|
|
# get a single cell
|
|
val = electrodes[0, "y"]
|
|
assert val == 5
|
|
val = electrodes[0, 2]
|
|
assert val == 5
|
|
|
|
# get a slice of rows and columns
|
|
subsection = electrodes[0:3, 0:3]
|
|
assert subsection.shape == (3, 3)
|
|
assert subsection.columns.tolist() == colnames[0:3]
|
|
assert subsection.dtypes.values.tolist() == dtypes[0:3]
|
|
|
|
|
|
def test_dynamictable_ragged_arrays(units):
|
|
"""
|
|
Should be able to index ragged arrays using an implicit _index column
|
|
|
|
Also tests:
|
|
- passing arrays directly instead of wrapping in vectordata/index specifically,
|
|
if the models in the fixture instantiate then this works
|
|
"""
|
|
units, spike_times, spike_idx = units
|
|
|
|
# ensure we don't pivot to long when indexing
|
|
assert units[0].shape[0] == 1
|
|
# check that we got the indexing boundaries corrunect
|
|
# (and that we are forwarding attr calls to the dataframe by accessing shape
|
|
for i in range(units.shape[0]):
|
|
assert np.all(units.iloc[i, 0] == spike_times[i])
|
|
|
|
|
|
def test_dynamictable_append_column():
|
|
pass
|
|
|
|
|
|
def test_dynamictable_append_row():
|
|
pass
|