mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2024-11-14 10:44:28 +00:00
174 lines
5.3 KiB
Python
174 lines
5.3 KiB
Python
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from nwb_linkml.models import (
|
|
Device,
|
|
DynamicTableRegion,
|
|
ElectricalSeries,
|
|
ElectrodeGroup,
|
|
ExtracellularEphysElectrodes,
|
|
IntracellularElectrode,
|
|
IntracellularElectrodesTable,
|
|
IntracellularRecordingsTable,
|
|
IntracellularResponsesTable,
|
|
IntracellularStimuliTable,
|
|
TimeSeriesReferenceVectorData,
|
|
Units,
|
|
VoltageClampSeries,
|
|
VoltageClampSeriesData,
|
|
VoltageClampStimulusSeries,
|
|
VoltageClampStimulusSeriesData,
|
|
)
|
|
|
|
|
|
@pytest.fixture()
|
|
def electrical_series() -> Tuple["ElectricalSeries", "ExtracellularEphysElectrodes"]:
|
|
"""
|
|
Demo electrical series with adjoining electrodes
|
|
"""
|
|
n_electrodes = 5
|
|
n_times = 100
|
|
data = np.arange(0, n_electrodes * n_times).reshape(n_times, n_electrodes).astype(float)
|
|
timestamps = np.linspace(0, 1, n_times)
|
|
|
|
device = Device(name="my electrode")
|
|
|
|
# electrode group is the physical description of the electrodes
|
|
electrode_group = ElectrodeGroup(
|
|
name="GroupA",
|
|
device=device,
|
|
description="an electrode group",
|
|
location="you know where it is",
|
|
)
|
|
|
|
# make electrodes tables
|
|
electrodes = ExtracellularEphysElectrodes(
|
|
description="idk these are also electrodes",
|
|
id=np.arange(0, n_electrodes),
|
|
x=np.arange(0, n_electrodes).astype(float),
|
|
y=np.arange(n_electrodes, n_electrodes * 2).astype(float),
|
|
group=[electrode_group] * n_electrodes,
|
|
group_name=[electrode_group.name] * n_electrodes,
|
|
location=[str(i) for i in range(n_electrodes)],
|
|
extra_column=["sup"] * n_electrodes,
|
|
)
|
|
|
|
electrical_series = ElectricalSeries(
|
|
name="my recording!",
|
|
electrodes=DynamicTableRegion(
|
|
table=electrodes,
|
|
value=np.arange(n_electrodes - 1, -1, step=-1),
|
|
name="electrodes",
|
|
description="hey",
|
|
),
|
|
timestamps=timestamps,
|
|
data=data,
|
|
)
|
|
return electrical_series, electrodes
|
|
|
|
|
|
def _ragged_array(n_units: int) -> tuple[list[np.ndarray], np.ndarray]:
|
|
generator = np.random.default_rng()
|
|
spike_times = [
|
|
np.full(shape=generator.integers(10, 50), fill_value=i, dtype=float) for i in range(n_units)
|
|
]
|
|
spike_idx = []
|
|
for i in range(n_units):
|
|
if i == 0:
|
|
spike_idx.append(len(spike_times[0]))
|
|
else:
|
|
spike_idx.append(len(spike_times[i]) + spike_idx[i - 1])
|
|
spike_idx = np.array(spike_idx)
|
|
return spike_times, spike_idx
|
|
|
|
|
|
@pytest.fixture(params=[True, False])
|
|
def units(request) -> Tuple[Units, list[np.ndarray], np.ndarray]:
|
|
"""
|
|
Test case for units
|
|
|
|
Parameterized by extra_column because pandas likes to pivot dataframes
|
|
to long when there is only one column and it's not len() == 1
|
|
"""
|
|
spike_times, spike_idx = _ragged_array(24)
|
|
|
|
spike_times_flat = np.concatenate(spike_times)
|
|
|
|
kwargs = {
|
|
"description": "units!!!!",
|
|
"spike_times": spike_times_flat,
|
|
"spike_times_index": spike_idx,
|
|
}
|
|
if request.param:
|
|
kwargs["extra_column"] = ["hey!"] * 24
|
|
units = Units(**kwargs)
|
|
return units, spike_times, spike_idx
|
|
|
|
|
|
def _icephys_stimulus_and_response(
|
|
i: int, electrode: IntracellularElectrode
|
|
) -> tuple[VoltageClampStimulusSeries, VoltageClampSeries]:
|
|
generator = np.random.default_rng()
|
|
n_samples = generator.integers(20, 50)
|
|
stimulus = VoltageClampStimulusSeries(
|
|
name=f"vcss_{i}",
|
|
data=VoltageClampStimulusSeriesData(value=[i] * n_samples),
|
|
stimulus_description=f"{i}",
|
|
sweep_number=i,
|
|
electrode=electrode,
|
|
)
|
|
response = VoltageClampSeries(
|
|
name=f"vcs_{i}",
|
|
data=VoltageClampSeriesData(value=[i] * n_samples),
|
|
stimulus_description=f"{i}",
|
|
electrode=electrode,
|
|
)
|
|
return stimulus, response
|
|
|
|
|
|
@pytest.fixture()
|
|
def intracellular_recordings_table() -> IntracellularRecordingsTable:
|
|
n_recordings = 10
|
|
generator = np.random.default_rng()
|
|
device = Device(name="my device")
|
|
electrode = IntracellularElectrode(
|
|
name="my_electrode", description="an electrode", device=device
|
|
)
|
|
stims = []
|
|
responses = []
|
|
for i in range(n_recordings):
|
|
stim, response = _icephys_stimulus_and_response(i, electrode)
|
|
stims.append(stim)
|
|
responses.append(response)
|
|
|
|
electrodes = IntracellularElectrodesTable(
|
|
name="intracellular_electrodes", electrode=[electrode] * n_recordings
|
|
)
|
|
stimuli = IntracellularStimuliTable(
|
|
name="intracellular_stimuli",
|
|
stimulus=TimeSeriesReferenceVectorData(
|
|
name="stimulus",
|
|
description="this should be optional",
|
|
idx_start=np.arange(n_recordings),
|
|
count=generator.integers(1, 10, (n_recordings,)),
|
|
timeseries=stims,
|
|
),
|
|
)
|
|
|
|
responses = IntracellularResponsesTable(
|
|
name="intracellular_responses",
|
|
response=TimeSeriesReferenceVectorData(
|
|
name="response",
|
|
description="this should be optional",
|
|
idx_start=np.arange(n_recordings),
|
|
count=generator.integers(1, 10, (n_recordings,)),
|
|
timeseries=responses,
|
|
),
|
|
)
|
|
|
|
recordings_table = IntracellularRecordingsTable(
|
|
electrodes=electrodes, stimuli=stimuli, responses=responses
|
|
)
|
|
return recordings_table
|