mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-09 21:44:27 +00:00
docs
simple old style nwb-linkml test
This commit is contained in:
parent
d5a3a09bed
commit
5d3cd95d84
20 changed files with 335 additions and 46 deletions
9
docs/api/index.md
Normal file
9
docs/api/index.md
Normal file
|
@ -0,0 +1,9 @@
|
|||
# numpydantic
|
||||
|
||||
Top-level API contents
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic
|
||||
:members:
|
||||
:imported-members:
|
||||
```
|
10
docs/api/linkml/index.md
Normal file
10
docs/api/linkml/index.md
Normal file
|
@ -0,0 +1,10 @@
|
|||
# linkml
|
||||
|
||||
```{toctree}
|
||||
:caption: LinkML
|
||||
|
||||
ndarraygen
|
||||
pydanticgen
|
||||
template
|
||||
```
|
||||
|
6
docs/api/linkml/ndarraygen.md
Normal file
6
docs/api/linkml/ndarraygen.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# ndarraygen
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.linkml.ndarraygen
|
||||
:members:
|
||||
```
|
6
docs/api/linkml/pydanticgen.md
Normal file
6
docs/api/linkml/pydanticgen.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# pydanticgen
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.linkml.pydanticgen
|
||||
:members:
|
||||
```
|
6
docs/api/linkml/template.md
Normal file
6
docs/api/linkml/template.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# template
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.linkml.template
|
||||
:members:
|
||||
```
|
6
docs/api/maps.md
Normal file
6
docs/api/maps.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# maps
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.maps
|
||||
:members:
|
||||
```
|
6
docs/api/monkeypatch.md
Normal file
6
docs/api/monkeypatch.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# monkeypatch
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.monkeypatch
|
||||
:members:
|
||||
```
|
6
docs/api/ndarray.md
Normal file
6
docs/api/ndarray.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# ndarray
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.ndarray
|
||||
:members:
|
||||
```
|
6
docs/api/proxy.md
Normal file
6
docs/api/proxy.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# proxy
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.proxy
|
||||
:members:
|
||||
```
|
53
docs/conf.py
53
docs/conf.py
|
@ -6,48 +6,53 @@
|
|||
# -- Project information -----------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
|
||||
|
||||
project = 'numpydantic'
|
||||
copyright = '2024, Jonny Saunders'
|
||||
author = 'Jonny Saunders'
|
||||
release = 'v0.0.0'
|
||||
project = "numpydantic"
|
||||
copyright = "2024, Jonny Saunders"
|
||||
author = "Jonny Saunders"
|
||||
release = "v0.0.0"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
|
||||
|
||||
extensions = [
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinxcontrib.autodoc_pydantic',
|
||||
'sphinx.ext.intersphinx',
|
||||
"sphinx.ext.napoleon",
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinxcontrib.autodoc_pydantic",
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx_design",
|
||||
'myst_parser',
|
||||
'sphinx.ext.todo'
|
||||
"myst_parser",
|
||||
"sphinx.ext.todo",
|
||||
]
|
||||
|
||||
templates_path = ['_templates']
|
||||
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
|
||||
templates_path = ["_templates"]
|
||||
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
||||
|
||||
intersphinx_mapping = {
|
||||
'python': ('https://docs.python.org/3', None),
|
||||
'numpy': ('https://numpy.org/doc/stable/', None),
|
||||
'pydantic': ('https://docs.pydantic.dev/latest/', None),
|
||||
'linkml': ('https://linkml.io/linkml/', None),
|
||||
'linkml_runtime': ('https://linkml.io/linkml/', None),
|
||||
'linkml-runtime': ('https://linkml.io/linkml/', None)
|
||||
"python": ("https://docs.python.org/3", None),
|
||||
"numpy": ("https://numpy.org/doc/stable/", None),
|
||||
"pydantic": ("https://docs.pydantic.dev/latest/", None),
|
||||
"linkml": ("https://linkml.io/linkml/", None),
|
||||
"linkml_runtime": ("https://linkml.io/linkml/", None),
|
||||
"linkml-runtime": ("https://linkml.io/linkml/", None),
|
||||
}
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
|
||||
|
||||
html_theme = 'furo'
|
||||
html_static_path = ['_static']
|
||||
html_theme = "furo"
|
||||
html_static_path = ["_static"]
|
||||
|
||||
# autodoc
|
||||
autodoc_pydantic_model_show_json_error_strategy = 'coerce'
|
||||
autodoc_pydantic_model_show_json_error_strategy = "coerce"
|
||||
autodoc_pydantic_model_show_json = False
|
||||
autodoc_mock_imports = []
|
||||
autodoc_mock_imports = [
|
||||
"dask",
|
||||
"h5py",
|
||||
"linkml",
|
||||
"linkml-runtime",
|
||||
]
|
||||
autoclass_content = "both"
|
||||
autodoc_member_order='bysource'
|
||||
autodoc_member_order = "bysource"
|
||||
add_module_names = False
|
||||
|
||||
# Napoleon settings
|
||||
|
@ -68,4 +73,4 @@ napoleon_attr_annotations = True
|
|||
|
||||
# todo
|
||||
todo_include_todos = True
|
||||
todo_link_only = True
|
||||
todo_link_only = True
|
||||
|
|
|
@ -1,5 +1,11 @@
|
|||
# Hooks
|
||||
|
||||
## TODO
|
||||
What hooks do we want to expose to downstream users so they can use this without needing
|
||||
to override everything?
|
||||
|
||||
- nwb compatibility: allowable precision map in dtype check
|
||||
```{todo}
|
||||
**NWB Compatibility**
|
||||
|
||||
**Precision:** NWB allows for a sort of hierarchy of type specification -
|
||||
a less precise type also allows the data to be specified in a more precise type
|
||||
```
|
|
@ -14,30 +14,32 @@ It does two primary things:
|
|||
- **Generate models from LinkML** - extend the LinkML pydantic generator to create models that
|
||||
that use the [linkml-arrays](https://github.com/linkml/linkml-arrays) syntax
|
||||
|
||||
## Overview
|
||||
|
||||
The Python type annotation system is weird and not like the rest of Python!
|
||||
(at least until [PEP 0649](https://peps.python.org/pep-0649/) gets mainlined).
|
||||
Similarly, Pydantic 2's core_schema system is wonderful but still relatively poorly
|
||||
documented for custom types! This package does the work of plugging them in
|
||||
together to make some kind of type validation frankenstein.
|
||||
|
||||
The first problem is that type annotations are evaluated statically by python, mypy,
|
||||
etc. This means you can't use typical python syntax for declaring types - it has to
|
||||
be present at the time `__new__` is called, rather than `__init__`.
|
||||
|
||||
- pydantic schema
|
||||
- validation
|
||||
- serialization
|
||||
- lazy loading
|
||||
- compression
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:caption: Contents
|
||||
:hidden: true
|
||||
|
||||
overview
|
||||
ndarray
|
||||
linkml
|
||||
hooks
|
||||
todo
|
||||
```
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:caption: Contents:
|
||||
:hidden:
|
||||
:caption: API
|
||||
:hidden: true
|
||||
|
||||
api/index
|
||||
api/ndarray
|
||||
api/proxy
|
||||
api/linkml/index
|
||||
api/maps
|
||||
api/monkeypatch
|
||||
|
||||
hooks
|
||||
```
|
||||
|
||||
|
|
2
docs/linkml.md
Normal file
2
docs/linkml.md
Normal file
|
@ -0,0 +1,2 @@
|
|||
# LinkML Generation
|
||||
|
134
docs/ndarray.md
Normal file
134
docs/ndarray.md
Normal file
|
@ -0,0 +1,134 @@
|
|||
# Constrained Arrays
|
||||
|
||||
## Implementation details
|
||||
|
||||
```{todo}
|
||||
**Docs:**
|
||||
|
||||
Describe implementation details!
|
||||
```
|
||||
|
||||
## Examples
|
||||
|
||||
### Declaration
|
||||
|
||||
Type with a single {class}`~numpydantic.NDArray` class, or use a {class}`~typing.Union`
|
||||
to express more complex array constraints.
|
||||
|
||||
This package is effectively a Pydantic interface to [nptyping](https://github.com/ramonhagenaars/nptyping),
|
||||
so any array syntax is valid there. (see [TODO](todo) for caveats)
|
||||
|
||||
```python
|
||||
from typing import Union
|
||||
from pydantic import BaseModel
|
||||
from numpydantic import NDArray, Shape, UInt8, Float, Int
|
||||
|
||||
class Image(BaseModel):
|
||||
"""
|
||||
Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension should always represent time. This can also be used to store binary data (e.g., image frames). This can also be a link to data stored in an external file.
|
||||
"""
|
||||
array: Union[
|
||||
NDArray[Shape["* x, * y"], UInt8],
|
||||
NDArray[Shape["* x, * y, 3 rgb"], UInt8],
|
||||
NDArray[Shape["* x, * y, 4 rgba"], UInt8],
|
||||
NDArray[Shape["* t, * x, * y, 3 rgb"], UInt8],
|
||||
NDArray[Shape["* t, * x, * y, 4 rgba"], Float]
|
||||
]
|
||||
```
|
||||
|
||||
### Validation:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
# works
|
||||
frame_gray = Image(array=np.ones((1280, 720), dtype=np.uint8))
|
||||
frame_rgb = Image(array=np.ones((1280, 720, 3), dtype=np.uint8))
|
||||
frame_rgba = Image(array=np.ones((1280, 720, 4), dtype=np.uint8))
|
||||
video_rgb = Image(array=np.ones((100, 1280, 720, 3), dtype=np.uint8))
|
||||
|
||||
# fails
|
||||
wrong_n_dimensions = Image(array=np.ones((1280,), dtype=np.uint8))
|
||||
wrong_shape = Image(array=np.ones((1280,720,10), dtype=np.uint8))
|
||||
wrong_type = Image(array=np.ones((1280,720,3), dtype=np.float64))
|
||||
|
||||
# shapes and types are checked together
|
||||
float_video = Image(array=np.ones((100, 1280, 720, 4),dtype=float))
|
||||
wrong_shape_float_video = Image(array=np.ones((100, 1280, 720, 3),dtype=float))
|
||||
```
|
||||
|
||||
### JSON schema generation:
|
||||
|
||||
```python
|
||||
class MyArray(BaseModel):
|
||||
array: NDArray[Shape["2 x, * y, 4 z"], Float]
|
||||
```
|
||||
|
||||
```python
|
||||
>>> print(json.dumps(MyArray.model_json_schema(), indent=2))
|
||||
```
|
||||
|
||||
```json
|
||||
{
|
||||
"properties": {
|
||||
"array": {
|
||||
"items": {
|
||||
"items": {
|
||||
"items": {
|
||||
"type": "number"
|
||||
},
|
||||
"maxItems": 4,
|
||||
"minItems": 4,
|
||||
"type": "array"
|
||||
},
|
||||
"type": "array"
|
||||
},
|
||||
"maxItems": 2,
|
||||
"minItems": 2,
|
||||
"title": "Array",
|
||||
"type": "array"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"array"
|
||||
],
|
||||
"title": "MyArray",
|
||||
"type": "object"
|
||||
}
|
||||
```
|
||||
|
||||
### Serialization
|
||||
|
||||
```python
|
||||
class SmolArray(BaseModel):
|
||||
array: NDArray[Shape["2 x, 2 y"], Int]
|
||||
|
||||
class BigArray(BaseModel):
|
||||
array: NDArray[Shape["1000 x, 1000 y"], Int]
|
||||
```
|
||||
|
||||
Serialize small arrays as lists of lists, and big arrays as a b64-encoded blosc compressed string
|
||||
|
||||
```python
|
||||
>>> smol = SmolArray(array=np.array([[1,2],[3,4]], dtype=int))
|
||||
>>> big = BigArray(array=np.random.randint(0,255,(1000,1000),int))
|
||||
|
||||
>>> print(smol.model_dump_json())
|
||||
{"array":[[1,2],[3,4]]}
|
||||
>>> print(big.model_dump_json())
|
||||
{
|
||||
"array": "( long b64 encoded string )",
|
||||
"shape": [1000, 1000],
|
||||
"dtype": "int64",
|
||||
"unpack_fns": ["base64.b64decode", "blosc2.unpack_array2"],
|
||||
}
|
||||
```
|
||||
|
||||
## TODO
|
||||
|
||||
```{todo}
|
||||
Implement structured arrays
|
||||
```
|
||||
|
||||
```{todo}
|
||||
Implement pandas dataframe validation?
|
||||
```
|
17
docs/overview.md
Normal file
17
docs/overview.md
Normal file
|
@ -0,0 +1,17 @@
|
|||
# Overview
|
||||
|
||||
The Python type annotation system is weird and not like the rest of Python!
|
||||
(at least until [PEP 0649](https://peps.python.org/pep-0649/) gets mainlined).
|
||||
Similarly, Pydantic 2's core_schema system is wonderful but still relatively poorly
|
||||
documented for custom types! This package does the work of plugging them in
|
||||
together to make some kind of type validation frankenstein.
|
||||
|
||||
The first problem is that type annotations are evaluated statically by python, mypy,
|
||||
etc. This means you can't use typical python syntax for declaring types - it has to
|
||||
be present at the time `__new__` is called, rather than `__init__`.
|
||||
|
||||
- pydantic schema
|
||||
- validation
|
||||
- serialization
|
||||
- lazy loading
|
||||
- compression
|
5
docs/todo.md
Normal file
5
docs/todo.md
Normal file
|
@ -0,0 +1,5 @@
|
|||
# TODO
|
||||
|
||||
```{todolist}
|
||||
|
||||
```
|
|
@ -1,12 +1,13 @@
|
|||
# ruff: noqa: E402
|
||||
# ruff: noqa: F401
|
||||
# ruff: noqa: I001
|
||||
from numpydantic.monkeypatch import apply_patches
|
||||
|
||||
apply_patches()
|
||||
|
||||
from numpydantic.ndarray import NDArray
|
||||
|
||||
# convenience imports for typing - finish this!
|
||||
from typing import Any
|
||||
|
||||
from nptyping import Float, Int, Number, Shape, UInt8
|
||||
|
||||
from numpydantic.ndarray import NDArray
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
# ruff: noqa: E402
|
||||
# ruff: noqa: F401
|
||||
from numpydantic.linkml.ndarraygen import (
|
||||
ArrayFormat,
|
||||
LinkMLDataArray,
|
||||
LinkMLNDArray,
|
||||
NWBLinkMLArraylike,
|
||||
)
|
|
@ -2,6 +2,7 @@ import shutil
|
|||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
from linkml_runtime.linkml_model import ClassDefinition, SlotDefinition
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
|
@ -38,3 +39,36 @@ def tmp_output_dir_mod(tmp_output_dir) -> Path:
|
|||
shutil.rmtree(str(subpath))
|
||||
subpath.mkdir()
|
||||
return subpath
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def nwb_linkml_array() -> tuple[ClassDefinition, str]:
|
||||
classdef = ClassDefinition(
|
||||
name="NWB_Linkml Array",
|
||||
description="Main class's array",
|
||||
is_a="Arraylike",
|
||||
attributes=[
|
||||
SlotDefinition(name="x", range="numeric", required=True),
|
||||
SlotDefinition(name="y", range="numeric", required=True),
|
||||
SlotDefinition(
|
||||
name="z",
|
||||
range="numeric",
|
||||
required=False,
|
||||
maximum_cardinality=3,
|
||||
minimum_cardinality=3,
|
||||
),
|
||||
SlotDefinition(
|
||||
name="a",
|
||||
range="numeric",
|
||||
required=False,
|
||||
minimum_cardinality=4,
|
||||
maximum_cardinality=4,
|
||||
),
|
||||
],
|
||||
)
|
||||
generated = """Union[
|
||||
NDArray[Shape["* x, * y"], Number],
|
||||
NDArray[Shape["* x, * y, 3 z"], Number],
|
||||
NDArray[Shape["* x, * y, 3 z, 4 a"], Number]
|
||||
]"""
|
||||
return classdef, generated
|
||||
|
|
14
tests/test_linkml/test_ndarraygen.py
Normal file
14
tests/test_linkml/test_ndarraygen.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
import pytest
|
||||
|
||||
from numpydantic.linkml import ArrayFormat, NWBLinkMLArraylike
|
||||
|
||||
from ..fixtures import nwb_linkml_array
|
||||
|
||||
|
||||
def test_nwb_linkml_array(nwb_linkml_array):
|
||||
classdef, generated = nwb_linkml_array
|
||||
|
||||
assert ArrayFormat.is_array(classdef)
|
||||
assert NWBLinkMLArraylike.check(classdef)
|
||||
assert ArrayFormat.get(classdef) is NWBLinkMLArraylike
|
||||
assert generated == NWBLinkMLArraylike.make(classdef)
|
Loading…
Reference in a new issue