mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-09 21:44:27 +00:00
Merge pull request #16 from p2p-ld/bugfix-empty-hdf5
bugfix - don't choke on empty HDF5 datasets during validation
This commit is contained in:
commit
c5a1e8ca74
3 changed files with 31 additions and 3 deletions
|
@ -145,8 +145,8 @@ select = [
|
||||||
"D210", "D211",
|
"D210", "D211",
|
||||||
# emptiness
|
# emptiness
|
||||||
"D419",
|
"D419",
|
||||||
|
# no pdb
|
||||||
|
"T100",
|
||||||
]
|
]
|
||||||
ignore = [
|
ignore = [
|
||||||
"ANN101", "ANN102", "ANN401", "ANN204",
|
"ANN101", "ANN102", "ANN401", "ANN204",
|
||||||
|
|
|
@ -326,8 +326,16 @@ class H5Interface(Interface):
|
||||||
return np.datetime64
|
return np.datetime64
|
||||||
else:
|
else:
|
||||||
return str
|
return str
|
||||||
except (AttributeError, ValueError, TypeError): # pragma: no cover
|
except (AttributeError, TypeError): # pragma: no cover
|
||||||
|
# it's not a datetime, but it is some kind of string
|
||||||
return str
|
return str
|
||||||
|
except (IndexError, ValueError):
|
||||||
|
# if the dataset is empty, we can't tell if something is a datetime
|
||||||
|
# or not, so we just tell the validation method what it wants to hear
|
||||||
|
if self.dtype in (np.datetime64, str):
|
||||||
|
return self.dtype
|
||||||
|
else:
|
||||||
|
return str
|
||||||
else:
|
else:
|
||||||
return array.dtype
|
return array.dtype
|
||||||
|
|
||||||
|
|
|
@ -198,3 +198,23 @@ def test_datetime(hdf5_array, compound):
|
||||||
assert instance.array[0, 0] == now
|
assert instance.array[0, 0] == now
|
||||||
instance.array[0] = now
|
instance.array[0] = now
|
||||||
assert all(instance.array[0] == now)
|
assert all(instance.array[0] == now)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("dtype", [int, float, str, datetime])
|
||||||
|
def test_empty_dataset(dtype, tmp_path):
|
||||||
|
"""
|
||||||
|
Empty datasets shouldn't choke us during validation
|
||||||
|
"""
|
||||||
|
array_path = tmp_path / "test.h5"
|
||||||
|
if dtype in (str, datetime):
|
||||||
|
np_dtype = "S32"
|
||||||
|
else:
|
||||||
|
np_dtype = dtype
|
||||||
|
|
||||||
|
with h5py.File(array_path, "w") as h5f:
|
||||||
|
_ = h5f.create_dataset(name="/data", dtype=np_dtype)
|
||||||
|
|
||||||
|
class MyModel(BaseModel):
|
||||||
|
array: NDArray[Any, dtype]
|
||||||
|
|
||||||
|
_ = MyModel(array=(array_path, "/data"))
|
||||||
|
|
Loading…
Reference in a new issue