mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-10 21:54:27 +00:00
213 lines
6.3 KiB
Markdown
213 lines
6.3 KiB
Markdown
---
|
|
file_format: mystnb
|
|
mystnb:
|
|
output_stderr: remove
|
|
render_text_lexer: python
|
|
render_markdown_format: myst
|
|
myst:
|
|
enable_extensions: ["colon_fence"]
|
|
---
|
|
# Testing
|
|
|
|
```{code-cell}
|
|
---
|
|
tags: [hide-cell]
|
|
---
|
|
|
|
from pathlib import Path
|
|
from rich.console import Console
|
|
from rich.theme import Theme
|
|
from rich.style import Style
|
|
from rich.color import Color
|
|
|
|
theme = Theme({
|
|
"repr.call": Style(color=Color.from_rgb(110,191,38), bold=True),
|
|
"repr.attrib_name": Style(color="slate_blue1"),
|
|
"repr.number": Style(color="deep_sky_blue1"),
|
|
"repr.none": Style(color="bright_magenta", italic=True),
|
|
"repr.attrib_name": Style(color="white"),
|
|
"repr.tag_contents": Style(color="light_steel_blue"),
|
|
"repr.str": Style(color="violet")
|
|
})
|
|
console = Console(theme=theme)
|
|
|
|
```
|
|
|
|
```{note}
|
|
Also see the [`numpydantic.testing` API docs](../api/testing/index.md)
|
|
and the [Writing an Interface](../interfaces.md) guide
|
|
```
|
|
|
|
Numpydantic exposes a system for combinatoric testing across dtypes, shapes,
|
|
and interfaces in the {mod}`numpydantic.testing` module.
|
|
|
|
These helper classes and functions are included in the distributed package
|
|
so they can be used for downstream development of independent interfaces
|
|
(though we always welcome contributions!)
|
|
|
|
## Validation Cases
|
|
|
|
Each test case is parameterized by a {class}`.ValidationCase`.
|
|
|
|
The case is intended to be able to be partially filled in so that multiple
|
|
validation cases can be merged together, but also used independently
|
|
by falling back on default values.
|
|
|
|
There are three major parts to a validation case:
|
|
|
|
- **Annotation specification:** {attr}`~.ValidationCase.annotation_dtype` and
|
|
{attr}`~.ValidationCase.annotation_shape` specifies how the
|
|
{class}`.NDArray` {attr}`.ValidationCase.annotation` that is used to test
|
|
against is generated
|
|
- **Array specification:** {attr}`~.ValidationCase.dtype` and {attr}`~.ValidationCase.shape`
|
|
specify that array that will be generated to test against the annotation
|
|
- **Interface specification:** An {class}`.InterfaceCase` that refers to
|
|
an {class}`.Interface`, and provides array generation and other auxilary logic.
|
|
|
|
Typically, one specifies a dtype along with an annotation dtype or
|
|
a shape along with an annotation shape (or implicitly against the defaults for either),
|
|
along with a value for `passes` that indicates if that combination is valid.
|
|
|
|
```{code-cell}
|
|
from numpydantic.testing import ValidationCase
|
|
|
|
dtype_case = ValidationCase(
|
|
id="int_int",
|
|
dtype=int,
|
|
annotation_dtype=int,
|
|
passes=True
|
|
)
|
|
shape_case = ValidationCase(
|
|
id="cool_shape",
|
|
shape=(1,2,3),
|
|
annotation_shape=(1,"*","2-4"),
|
|
passes=True
|
|
)
|
|
|
|
merged = dtype_case.merge(shape_case)
|
|
console.print(merged.model_dump(exclude={'annotation', 'model'}, exclude_unset=True))
|
|
```
|
|
|
|
When merging validation cases, the merged case only `passes` if all the
|
|
original cases do.
|
|
|
|
```{code-cell}
|
|
from numpydantic.testing import ValidationCase
|
|
|
|
dtype_case = ValidationCase(
|
|
id="int_int",
|
|
dtype=int,
|
|
annotation_dtype=int,
|
|
passes=True
|
|
)
|
|
shape_case = ValidationCase(
|
|
id="uncool_shape",
|
|
shape=(1,2,3),
|
|
annotation_shape=(9,8,7),
|
|
passes=False
|
|
)
|
|
|
|
merged = dtype_case.merge(shape_case)
|
|
console.print(merged.model_dump(exclude={'annotation', 'model'}, exclude_unset=True))
|
|
```
|
|
|
|
We provide a convenience function {func}`.merged_product` for creating a merged product of
|
|
multiple sets of test cases.
|
|
|
|
For example, you may want to create a set of dtype and shape cases and validate
|
|
against all combinations
|
|
|
|
```{code-cell}
|
|
from numpydantic.testing.helpers import merged_product
|
|
|
|
dtype_cases = [
|
|
ValidationCase(dtype=int, annotation_dtype=int, passes=True),
|
|
ValidationCase(dtype=int, annotation_dtype=float, passes=False)
|
|
]
|
|
shape_cases = [
|
|
ValidationCase(shape=(1,2,3), annotation_shape=(1,2,3), passes=True),
|
|
ValidationCase(shape=(4,5,6), annotation_shape=(1,2,3), passes=False)
|
|
]
|
|
|
|
iterator = merged_product(dtype_cases, shape_cases)
|
|
|
|
console.print([i.model_dump(exclude_unset=True, exclude={'model', 'annotation'}) for i in iterator])
|
|
|
|
```
|
|
|
|
You can pass constraints to the {func}`.merged_product` iterator to
|
|
filter cases that match some value, for example to get only the cases that pass:
|
|
|
|
```{code-cell}
|
|
iterator = merged_product(dtype_cases, shape_cases, conditions={"passes": True})
|
|
console.print([i.model_dump(exclude_unset=True, exclude={'model', 'annotation'}) for i in iterator])
|
|
```
|
|
|
|
## Interface Cases
|
|
|
|
Validation cases can be paired with interface cases that handle
|
|
generating arrays for the given interface from the specification in the
|
|
validation case.
|
|
|
|
Since some array interfaces like Zarr have multiple possible forms
|
|
of an array (in memory, on disk, in a zip file, etc.) an interface
|
|
may have multiple cases that are important to test against.
|
|
|
|
The {meth}`.InterfaceCase.make_array` method does what you'd expect it to,
|
|
creating an array, and returning the appropriate input type for the interface:
|
|
|
|
```{code-cell}
|
|
from numpydantic.testing.interfaces import NumpyCase, ZarrNestedCase
|
|
|
|
NumpyCase.make_array(shape=(1,2,3), dtype=float)
|
|
```
|
|
|
|
```{code-cell}
|
|
ZarrNestedCase.make_array(shape=(1,2,3), dtype=float, path=Path("__tmp__/zarr_dir"))
|
|
```
|
|
|
|
Interface cases also define when an interface should skip a given test
|
|
parameterization. For example, some array formats can't support arbitrary
|
|
object serialization, and the video class can only support 8-bit arrays
|
|
of a specific shape
|
|
|
|
```{code-cell}
|
|
from numpydantic.testing.interfaces import VideoCase
|
|
|
|
VideoCase.skip(shape=(1,1), dtype=float)
|
|
```
|
|
|
|
This, and the array generation methods are propagated up into
|
|
a ValidationCase that contains them
|
|
|
|
```{code-cell}
|
|
case = ValidationCase(shape=(1,2,3), dtype=float, interface=VideoCase)
|
|
case.skip()
|
|
```
|
|
|
|
The {func}`.merged_product` iterator automatically excludes any
|
|
combinations of interfaces and test parameterizations that should be skipped.
|
|
|
|
## Making Fixtures
|
|
|
|
Pytest fixtures are a useful way to re-use validation case products.
|
|
To keep things tidy, you may want to use marks and ids when creating them
|
|
so that you can run tests against specific interfaces or conditions
|
|
with the `pytest -m mark` system.
|
|
|
|
```python
|
|
import pytest
|
|
|
|
@pytest.fixture(
|
|
params=(
|
|
pytest.param(
|
|
p,
|
|
id=p.id,
|
|
marks=getattr(pytest.mark, p.interface.interface.name)
|
|
)
|
|
for p in iterator
|
|
)
|
|
)
|
|
def my_cases(request):
|
|
return request.param
|
|
```
|