2024-08-30 07:39:10 +00:00
|
|
|
from datetime import datetime
|
|
|
|
from itertools import product
|
2024-07-02 04:44:35 +00:00
|
|
|
from pathlib import Path
|
2023-10-06 04:22:00 +00:00
|
|
|
|
2024-08-30 07:39:10 +00:00
|
|
|
import numpy as np
|
2024-07-02 04:44:35 +00:00
|
|
|
import pytest
|
2024-09-02 20:40:46 +00:00
|
|
|
from hdmf.common import DynamicTable, VectorData
|
2024-08-30 07:39:10 +00:00
|
|
|
from pynwb import NWBHDF5IO, NWBFile, TimeSeries
|
|
|
|
from pynwb.base import TimeSeriesReference, TimeSeriesReferenceVectorData
|
|
|
|
from pynwb.behavior import Position, SpatialSeries
|
|
|
|
from pynwb.ecephys import LFP, ElectricalSeries
|
|
|
|
from pynwb.file import Subject
|
|
|
|
from pynwb.icephys import VoltageClampSeries, VoltageClampStimulusSeries
|
|
|
|
from pynwb.image import ImageSeries
|
|
|
|
from pynwb.ophys import (
|
|
|
|
CorrectedImageStack,
|
|
|
|
Fluorescence,
|
|
|
|
ImageSegmentation,
|
|
|
|
MotionCorrection,
|
|
|
|
OnePhotonSeries,
|
|
|
|
OpticalChannel,
|
|
|
|
RoiResponseSeries,
|
|
|
|
TwoPhotonSeries,
|
|
|
|
)
|
2024-07-02 04:44:35 +00:00
|
|
|
|
2024-07-02 04:23:31 +00:00
|
|
|
|
2023-08-21 06:00:58 +00:00
|
|
|
@pytest.fixture(scope="session")
|
2024-09-02 20:40:46 +00:00
|
|
|
def nwb_file_base() -> NWBFile:
|
2024-08-30 07:39:10 +00:00
|
|
|
nwbfile = NWBFile(
|
|
|
|
session_description="All that you touch, you change.", # required
|
|
|
|
identifier="1111-1111-1111-1111", # required
|
|
|
|
session_start_time=datetime(year=2024, month=1, day=1), # required
|
|
|
|
session_id="session_1234", # optional
|
|
|
|
experimenter=[
|
|
|
|
"Lauren Oya Olamina",
|
|
|
|
], # optional
|
|
|
|
institution="Earthseed Research Institute", # optional
|
|
|
|
experiment_description="All that you change, changes you.", # optional
|
|
|
|
keywords=["behavior", "belief"], # optional
|
|
|
|
related_publications="doi:10.1016/j.neuron.2016.12.011", # optional
|
|
|
|
)
|
|
|
|
subject = Subject(
|
|
|
|
subject_id="001",
|
|
|
|
age="P90D",
|
|
|
|
description="mouse 5",
|
|
|
|
species="Mus musculus",
|
|
|
|
sex="M",
|
|
|
|
)
|
|
|
|
nwbfile.subject = subject
|
2024-09-02 20:40:46 +00:00
|
|
|
return nwbfile
|
|
|
|
|
2024-08-30 07:39:10 +00:00
|
|
|
|
2024-09-02 20:40:46 +00:00
|
|
|
def _nwb_timeseries(nwbfile: NWBFile) -> NWBFile:
|
2024-08-30 07:39:10 +00:00
|
|
|
data = np.arange(100, 200, 10)
|
|
|
|
timestamps = np.arange(10.0)
|
|
|
|
time_series_with_timestamps = TimeSeries(
|
|
|
|
name="test_timeseries",
|
|
|
|
description="an example time series",
|
|
|
|
data=data,
|
|
|
|
unit="m",
|
|
|
|
timestamps=timestamps,
|
|
|
|
)
|
|
|
|
nwbfile.add_acquisition(time_series_with_timestamps)
|
2024-09-02 20:40:46 +00:00
|
|
|
return nwbfile
|
2024-08-30 07:39:10 +00:00
|
|
|
|
2024-09-02 20:40:46 +00:00
|
|
|
|
|
|
|
def _nwb_position(nwbfile: NWBFile) -> NWBFile:
|
2024-08-30 07:39:10 +00:00
|
|
|
position_data = np.array([np.linspace(0, 10, 50), np.linspace(0, 8, 50)]).T
|
|
|
|
position_timestamps = np.linspace(0, 50).astype(float) / 200
|
|
|
|
|
|
|
|
spatial_series_obj = SpatialSeries(
|
|
|
|
name="SpatialSeries",
|
|
|
|
description="(x,y) position in open field",
|
|
|
|
data=position_data,
|
|
|
|
timestamps=position_timestamps,
|
|
|
|
reference_frame="(0,0) is bottom left corner",
|
|
|
|
)
|
|
|
|
# name is set to "Position" by default
|
|
|
|
position_obj = Position(spatial_series=spatial_series_obj)
|
|
|
|
behavior_module = nwbfile.create_processing_module(
|
|
|
|
name="behavior", description="processed behavioral data"
|
|
|
|
)
|
|
|
|
behavior_module.add(position_obj)
|
|
|
|
|
|
|
|
nwbfile.add_trial_column(
|
|
|
|
name="correct",
|
|
|
|
description="whether the trial was correct",
|
|
|
|
)
|
|
|
|
nwbfile.add_trial(start_time=1.0, stop_time=5.0, correct=True)
|
|
|
|
nwbfile.add_trial(start_time=6.0, stop_time=10.0, correct=False)
|
2024-09-02 20:40:46 +00:00
|
|
|
return nwbfile
|
2024-08-30 07:39:10 +00:00
|
|
|
|
2024-09-02 20:40:46 +00:00
|
|
|
|
|
|
|
def _nwb_ecephys(nwbfile: NWBFile) -> NWBFile:
|
|
|
|
"""
|
|
|
|
Extracellular Ephys
|
|
|
|
https://pynwb.readthedocs.io/en/latest/tutorials/domain/ecephys.html
|
|
|
|
"""
|
|
|
|
generator = np.random.default_rng()
|
2024-08-30 07:39:10 +00:00
|
|
|
device = nwbfile.create_device(name="array", description="old reliable", manufacturer="diy")
|
|
|
|
nwbfile.add_electrode_column(name="label", description="label of electrode")
|
|
|
|
|
|
|
|
nshanks = 4
|
|
|
|
nchannels_per_shank = 3
|
|
|
|
electrode_counter = 0
|
|
|
|
|
|
|
|
for ishank in range(nshanks):
|
|
|
|
# create an electrode group for this shank
|
|
|
|
electrode_group = nwbfile.create_electrode_group(
|
|
|
|
name=f"shank{ishank}",
|
|
|
|
description=f"electrode group for shank {ishank}",
|
|
|
|
device=device,
|
|
|
|
location="brain area",
|
|
|
|
)
|
|
|
|
# add electrodes to the electrode table
|
|
|
|
for ielec in range(nchannels_per_shank):
|
|
|
|
nwbfile.add_electrode(
|
|
|
|
group=electrode_group,
|
|
|
|
label=f"shank{ishank}elec{ielec}",
|
|
|
|
location="brain area",
|
|
|
|
)
|
|
|
|
electrode_counter += 1
|
|
|
|
all_table_region = nwbfile.create_electrode_table_region(
|
|
|
|
region=list(range(electrode_counter)), # reference row indices 0 to N-1
|
|
|
|
description="all electrodes",
|
|
|
|
)
|
|
|
|
raw_data = generator.standard_normal((50, 12))
|
|
|
|
raw_electrical_series = ElectricalSeries(
|
|
|
|
name="ElectricalSeries",
|
|
|
|
description="Raw acquisition traces",
|
|
|
|
data=raw_data,
|
|
|
|
electrodes=all_table_region,
|
|
|
|
starting_time=0.0,
|
|
|
|
# timestamp of the first sample in seconds relative to the session start time
|
|
|
|
rate=20000.0, # in Hz
|
|
|
|
)
|
|
|
|
nwbfile.add_acquisition(raw_electrical_series)
|
|
|
|
|
|
|
|
# --------------------------------------------------
|
|
|
|
# LFP
|
|
|
|
# --------------------------------------------------
|
2024-09-02 20:40:46 +00:00
|
|
|
generator = np.random.default_rng()
|
2024-08-30 07:39:10 +00:00
|
|
|
lfp_data = generator.standard_normal((50, 12))
|
|
|
|
lfp_electrical_series = ElectricalSeries(
|
|
|
|
name="ElectricalSeries",
|
|
|
|
description="LFP data",
|
|
|
|
data=lfp_data,
|
|
|
|
electrodes=all_table_region,
|
|
|
|
starting_time=0.0,
|
|
|
|
rate=200.0,
|
|
|
|
)
|
|
|
|
lfp = LFP(electrical_series=lfp_electrical_series)
|
|
|
|
ecephys_module = nwbfile.create_processing_module(
|
|
|
|
name="ecephys", description="processed extracellular electrophysiology data"
|
|
|
|
)
|
|
|
|
ecephys_module.add(lfp)
|
|
|
|
|
2024-09-02 20:40:46 +00:00
|
|
|
return nwbfile
|
|
|
|
|
|
|
|
|
|
|
|
def _nwb_units(nwbfile: NWBFile) -> NWBFile:
|
|
|
|
generator = np.random.default_rng()
|
2024-08-30 07:39:10 +00:00
|
|
|
# Spike Times
|
|
|
|
nwbfile.add_unit_column(name="quality", description="sorting quality")
|
|
|
|
firing_rate = 20
|
|
|
|
n_units = 10
|
|
|
|
res = 1000
|
|
|
|
duration = 20
|
|
|
|
for _ in range(n_units):
|
|
|
|
spike_times = np.where(generator.random(res * duration) < (firing_rate / res))[0] / res
|
|
|
|
nwbfile.add_unit(spike_times=spike_times, quality="good")
|
2024-09-02 20:40:46 +00:00
|
|
|
return nwbfile
|
2024-08-30 07:39:10 +00:00
|
|
|
|
2024-09-02 20:40:46 +00:00
|
|
|
|
|
|
|
def _nwb_icephys(nwbfile: NWBFile) -> NWBFile:
|
2024-08-30 07:39:10 +00:00
|
|
|
device = nwbfile.create_device(name="Heka ITC-1600")
|
|
|
|
electrode = nwbfile.create_icephys_electrode(
|
|
|
|
name="elec0", description="a mock intracellular electrode", device=device
|
|
|
|
)
|
|
|
|
stimulus = VoltageClampStimulusSeries(
|
|
|
|
name="ccss",
|
|
|
|
data=[1, 2, 3, 4, 5],
|
|
|
|
starting_time=123.6,
|
|
|
|
rate=10e3,
|
|
|
|
electrode=electrode,
|
|
|
|
gain=0.02,
|
|
|
|
sweep_number=np.uint64(15),
|
|
|
|
)
|
|
|
|
|
|
|
|
# Create and icephys response
|
|
|
|
response = VoltageClampSeries(
|
|
|
|
name="vcs",
|
|
|
|
data=[0.1, 0.2, 0.3, 0.4, 0.5],
|
|
|
|
conversion=1e-12,
|
|
|
|
resolution=np.nan,
|
|
|
|
starting_time=123.6,
|
|
|
|
rate=20e3,
|
|
|
|
electrode=electrode,
|
|
|
|
gain=0.02,
|
|
|
|
capacitance_slow=100e-12,
|
|
|
|
resistance_comp_correction=70.0,
|
|
|
|
sweep_number=np.uint64(15),
|
|
|
|
)
|
|
|
|
# we can also add stimulus template data as follows
|
|
|
|
rowindex = nwbfile.add_intracellular_recording(
|
|
|
|
electrode=electrode, stimulus=stimulus, response=response, id=10
|
|
|
|
)
|
|
|
|
|
|
|
|
rowindex2 = nwbfile.add_intracellular_recording(
|
|
|
|
electrode=electrode,
|
|
|
|
stimulus=stimulus,
|
|
|
|
stimulus_start_index=1,
|
|
|
|
stimulus_index_count=3,
|
|
|
|
response=response,
|
|
|
|
response_start_index=2,
|
|
|
|
response_index_count=3,
|
|
|
|
id=11,
|
|
|
|
)
|
|
|
|
rowindex3 = nwbfile.add_intracellular_recording(electrode=electrode, response=response, id=12)
|
|
|
|
|
|
|
|
nwbfile.intracellular_recordings.add_column(
|
|
|
|
name="recording_tag",
|
|
|
|
data=["A1", "A2", "A3"],
|
|
|
|
description="String with a recording tag",
|
|
|
|
)
|
|
|
|
location_column = VectorData(
|
|
|
|
name="location",
|
|
|
|
data=["Mordor", "Gondor", "Rohan"],
|
|
|
|
description="Recording location in Middle Earth",
|
|
|
|
)
|
|
|
|
|
|
|
|
lab_category = DynamicTable(
|
|
|
|
name="recording_lab_data",
|
|
|
|
description="category table for lab-specific recording metadata",
|
|
|
|
colnames=[
|
|
|
|
"location",
|
|
|
|
],
|
|
|
|
columns=[
|
|
|
|
location_column,
|
|
|
|
],
|
|
|
|
)
|
|
|
|
# Add the table as a new category to our intracellular_recordings
|
|
|
|
nwbfile.intracellular_recordings.add_category(category=lab_category)
|
|
|
|
nwbfile.intracellular_recordings.add_column(
|
|
|
|
name="voltage_threshold",
|
|
|
|
data=[0.1, 0.12, 0.13],
|
|
|
|
description="Just an example column on the electrodes category table",
|
|
|
|
category="electrodes",
|
|
|
|
)
|
|
|
|
stimulus_template = VoltageClampStimulusSeries(
|
|
|
|
name="ccst",
|
|
|
|
data=[0, 1, 2, 3, 4],
|
|
|
|
starting_time=0.0,
|
|
|
|
rate=10e3,
|
|
|
|
electrode=electrode,
|
|
|
|
gain=0.02,
|
|
|
|
)
|
|
|
|
nwbfile.add_stimulus_template(stimulus_template)
|
|
|
|
|
|
|
|
nwbfile.intracellular_recordings.add_column(
|
|
|
|
name="stimulus_template",
|
|
|
|
data=[
|
|
|
|
TimeSeriesReference(0, 5, stimulus_template),
|
|
|
|
# (start_index, index_count, stimulus_template)
|
|
|
|
TimeSeriesReference(1, 3, stimulus_template),
|
|
|
|
TimeSeriesReference.empty(stimulus_template),
|
|
|
|
],
|
|
|
|
# if there was no data for that recording, use empty reference
|
|
|
|
description=(
|
|
|
|
"Column storing the reference to the stimulus template for the recording (rows)."
|
|
|
|
),
|
|
|
|
category="stimuli",
|
|
|
|
col_cls=TimeSeriesReferenceVectorData,
|
|
|
|
)
|
|
|
|
|
|
|
|
icephys_simultaneous_recordings = nwbfile.get_icephys_simultaneous_recordings()
|
|
|
|
icephys_simultaneous_recordings.add_column(
|
|
|
|
name="simultaneous_recording_tag",
|
|
|
|
description="A custom tag for simultaneous_recordings",
|
|
|
|
)
|
|
|
|
simultaneous_index = nwbfile.add_icephys_simultaneous_recording(
|
|
|
|
recordings=[rowindex, rowindex2, rowindex3],
|
|
|
|
id=12,
|
|
|
|
simultaneous_recording_tag="LabTag1",
|
|
|
|
)
|
|
|
|
repetition_index = nwbfile.add_icephys_repetition(
|
|
|
|
sequential_recordings=[simultaneous_index], id=17
|
|
|
|
)
|
|
|
|
nwbfile.add_icephys_experimental_condition(repetitions=[repetition_index], id=19)
|
|
|
|
nwbfile.icephys_experimental_conditions.add_column(
|
|
|
|
name="tag",
|
|
|
|
data=np.arange(1),
|
|
|
|
description="integer tag for a experimental condition",
|
|
|
|
)
|
2024-09-02 20:40:46 +00:00
|
|
|
return nwbfile
|
2024-08-30 07:39:10 +00:00
|
|
|
|
2024-09-02 20:40:46 +00:00
|
|
|
|
|
|
|
def _nwb_ca_imaging(nwbfile: NWBFile) -> NWBFile:
|
|
|
|
"""
|
|
|
|
Calcium Imaging
|
|
|
|
https://pynwb.readthedocs.io/en/latest/tutorials/domain/ophys.html
|
|
|
|
"""
|
|
|
|
generator = np.random.default_rng()
|
2024-08-30 07:39:10 +00:00
|
|
|
device = nwbfile.create_device(
|
|
|
|
name="Microscope",
|
|
|
|
description="My two-photon microscope",
|
|
|
|
manufacturer="The best microscope manufacturer",
|
|
|
|
)
|
|
|
|
optical_channel = OpticalChannel(
|
|
|
|
name="OpticalChannel",
|
|
|
|
description="an optical channel",
|
|
|
|
emission_lambda=500.0,
|
|
|
|
)
|
|
|
|
imaging_plane = nwbfile.create_imaging_plane(
|
|
|
|
name="ImagingPlane",
|
|
|
|
optical_channel=optical_channel,
|
|
|
|
imaging_rate=30.0,
|
|
|
|
description="a very interesting part of the brain",
|
|
|
|
device=device,
|
|
|
|
excitation_lambda=600.0,
|
|
|
|
indicator="GFP",
|
|
|
|
location="V1",
|
|
|
|
grid_spacing=[0.01, 0.01],
|
|
|
|
grid_spacing_unit="meters",
|
|
|
|
origin_coords=[1.0, 2.0, 3.0],
|
|
|
|
origin_coords_unit="meters",
|
|
|
|
)
|
|
|
|
one_p_series = OnePhotonSeries(
|
|
|
|
name="OnePhotonSeries",
|
|
|
|
description="Raw 1p data",
|
|
|
|
data=np.ones((1000, 100, 100)),
|
|
|
|
imaging_plane=imaging_plane,
|
|
|
|
rate=1.0,
|
|
|
|
unit="normalized amplitude",
|
|
|
|
)
|
|
|
|
nwbfile.add_acquisition(one_p_series)
|
|
|
|
two_p_series = TwoPhotonSeries(
|
|
|
|
name="TwoPhotonSeries",
|
|
|
|
description="Raw 2p data",
|
|
|
|
data=np.ones((1000, 100, 100)),
|
|
|
|
imaging_plane=imaging_plane,
|
|
|
|
rate=1.0,
|
|
|
|
unit="normalized amplitude",
|
|
|
|
)
|
|
|
|
|
|
|
|
nwbfile.add_acquisition(two_p_series)
|
|
|
|
|
|
|
|
corrected = ImageSeries(
|
|
|
|
name="corrected", # this must be named "corrected"
|
|
|
|
description="A motion corrected image stack",
|
|
|
|
data=np.ones((1000, 100, 100)),
|
|
|
|
unit="na",
|
|
|
|
format="raw",
|
|
|
|
starting_time=0.0,
|
|
|
|
rate=1.0,
|
|
|
|
)
|
|
|
|
|
|
|
|
xy_translation = TimeSeries(
|
|
|
|
name="xy_translation",
|
|
|
|
description="x,y translation in pixels",
|
|
|
|
data=np.ones((1000, 2)),
|
|
|
|
unit="pixels",
|
|
|
|
starting_time=0.0,
|
|
|
|
rate=1.0,
|
|
|
|
)
|
|
|
|
|
|
|
|
corrected_image_stack = CorrectedImageStack(
|
|
|
|
corrected=corrected,
|
|
|
|
original=one_p_series,
|
|
|
|
xy_translation=xy_translation,
|
|
|
|
)
|
|
|
|
|
|
|
|
motion_correction = MotionCorrection(corrected_image_stacks=[corrected_image_stack])
|
|
|
|
|
|
|
|
ophys_module = nwbfile.create_processing_module(
|
|
|
|
name="ophys", description="optical physiology processed data"
|
|
|
|
)
|
|
|
|
|
|
|
|
ophys_module.add(motion_correction)
|
|
|
|
|
|
|
|
img_seg = ImageSegmentation()
|
|
|
|
|
|
|
|
ps = img_seg.create_plane_segmentation(
|
|
|
|
name="PlaneSegmentation",
|
|
|
|
description="output from segmenting my favorite imaging plane",
|
|
|
|
imaging_plane=imaging_plane,
|
|
|
|
reference_images=one_p_series, # optional
|
|
|
|
)
|
|
|
|
|
|
|
|
ophys_module.add(img_seg)
|
|
|
|
|
|
|
|
for _ in range(30):
|
|
|
|
image_mask = np.zeros((100, 100))
|
|
|
|
|
|
|
|
# randomly generate example image masks
|
|
|
|
x = generator.integers(0, 95)
|
|
|
|
y = generator.integers(0, 95)
|
|
|
|
image_mask[x : x + 5, y : y + 5] = 1
|
|
|
|
|
|
|
|
# add image mask to plane segmentation
|
|
|
|
ps.add_roi(image_mask=image_mask)
|
|
|
|
|
|
|
|
ps2 = img_seg.create_plane_segmentation(
|
|
|
|
name="PlaneSegmentation2",
|
|
|
|
description="output from segmenting my favorite imaging plane",
|
|
|
|
imaging_plane=imaging_plane,
|
|
|
|
reference_images=one_p_series, # optional
|
|
|
|
)
|
|
|
|
|
|
|
|
for _ in range(30):
|
|
|
|
# randomly generate example starting points for region
|
|
|
|
x = generator.integers(0, 95)
|
|
|
|
y = generator.integers(0, 95)
|
|
|
|
|
|
|
|
# define an example 4 x 3 region of pixels of weight '1'
|
|
|
|
pixel_mask = [(ix, iy, 1) for ix in range(x, x + 4) for iy in range(y, y + 3)]
|
|
|
|
|
|
|
|
# add pixel mask to plane segmentation
|
|
|
|
ps2.add_roi(pixel_mask=pixel_mask)
|
|
|
|
|
|
|
|
ps3 = img_seg.create_plane_segmentation(
|
|
|
|
name="PlaneSegmentation3",
|
|
|
|
description="output from segmenting my favorite imaging plane",
|
|
|
|
imaging_plane=imaging_plane,
|
|
|
|
reference_images=one_p_series, # optional
|
|
|
|
)
|
|
|
|
|
|
|
|
for _ in range(30):
|
|
|
|
# randomly generate example starting points for region
|
|
|
|
x = generator.integers(0, 95)
|
|
|
|
y = generator.integers(0, 95)
|
|
|
|
z = generator.integers(0, 15)
|
|
|
|
|
|
|
|
# define an example 4 x 3 x 2 voxel region of weight '0.5'
|
|
|
|
voxel_mask = []
|
|
|
|
for ix, iy, iz in product(range(x, x + 4), range(y, y + 3), range(z, z + 2)):
|
|
|
|
voxel_mask.append((ix, iy, iz, 0.5))
|
|
|
|
|
|
|
|
# add voxel mask to plane segmentation
|
|
|
|
ps3.add_roi(voxel_mask=voxel_mask)
|
|
|
|
rt_region = ps.create_roi_table_region(region=[0, 1], description="the first of two ROIs")
|
|
|
|
roi_resp_series = RoiResponseSeries(
|
|
|
|
name="RoiResponseSeries",
|
|
|
|
description="Fluorescence responses for two ROIs",
|
|
|
|
data=np.ones((50, 2)), # 50 samples, 2 ROIs
|
|
|
|
rois=rt_region,
|
|
|
|
unit="lumens",
|
|
|
|
rate=30.0,
|
|
|
|
)
|
|
|
|
fl = Fluorescence(roi_response_series=roi_resp_series)
|
|
|
|
ophys_module.add(fl)
|
2024-09-02 20:40:46 +00:00
|
|
|
return nwbfile
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
|
|
def nwb_file(tmp_output_dir, nwb_file_base, request: pytest.FixtureRequest) -> Path:
|
|
|
|
"""
|
|
|
|
NWB File created with pynwb that uses all the weird language features
|
|
|
|
|
|
|
|
Borrowing code from pynwb docs in one humonogous fixture function
|
|
|
|
since there's not really a reason to
|
|
|
|
"""
|
|
|
|
nwb_path = tmp_output_dir / "test_nwb.nwb"
|
2024-09-02 20:41:04 +00:00
|
|
|
if nwb_path.exists() and not request.config.getoption("--clean"):
|
2024-09-02 20:40:46 +00:00
|
|
|
return nwb_path
|
|
|
|
|
|
|
|
nwbfile = nwb_file_base
|
|
|
|
nwbfile = _nwb_timeseries(nwbfile)
|
|
|
|
nwbfile = _nwb_position(nwbfile)
|
|
|
|
nwbfile = _nwb_ecephys(nwbfile)
|
|
|
|
nwbfile = _nwb_units(nwbfile)
|
|
|
|
nwbfile = _nwb_icephys(nwbfile)
|
2024-08-30 07:39:10 +00:00
|
|
|
|
|
|
|
with NWBHDF5IO(nwb_path, "w") as io:
|
|
|
|
io.write(nwbfile)
|
|
|
|
|
|
|
|
return nwb_path
|