mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 14:14:27 +00:00
first impl of dynamictable working!
This commit is contained in:
parent
e5d1cc52de
commit
c06859a537
5 changed files with 336 additions and 235 deletions
File diff suppressed because it is too large
Load diff
|
@ -22,7 +22,7 @@ dependencies = [
|
||||||
"dask>=2023.9.2",
|
"dask>=2023.9.2",
|
||||||
"tqdm>=4.66.1",
|
"tqdm>=4.66.1",
|
||||||
'typing-extensions>=4.12.2;python_version<"3.11"',
|
'typing-extensions>=4.12.2;python_version<"3.11"',
|
||||||
"numpydantic>=1.2.2",
|
"numpydantic>=1.3.0",
|
||||||
"black>=24.4.2",
|
"black>=24.4.2",
|
||||||
"pandas>=2.2.2",
|
"pandas>=2.2.2",
|
||||||
]
|
]
|
||||||
|
|
|
@ -6,7 +6,7 @@ from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Tuple, Un
|
||||||
|
|
||||||
from linkml.generators.pydanticgen.template import Import, Imports, ObjectImport
|
from linkml.generators.pydanticgen.template import Import, Imports, ObjectImport
|
||||||
from numpydantic import NDArray
|
from numpydantic import NDArray
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame, Series
|
||||||
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
|
@ -98,6 +98,11 @@ class DynamicTableMixin(BaseModel):
|
||||||
rows, cols = item
|
rows, cols = item
|
||||||
if isinstance(cols, (int, slice)):
|
if isinstance(cols, (int, slice)):
|
||||||
cols = self.colnames[cols]
|
cols = self.colnames[cols]
|
||||||
|
|
||||||
|
if isinstance(rows, int) and isinstance(cols, str):
|
||||||
|
# single scalar value
|
||||||
|
return self._columns[cols][rows]
|
||||||
|
|
||||||
data = self._slice_range(rows, cols)
|
data = self._slice_range(rows, cols)
|
||||||
return DataFrame.from_dict(data)
|
return DataFrame.from_dict(data)
|
||||||
else:
|
else:
|
||||||
|
@ -110,7 +115,14 @@ class DynamicTableMixin(BaseModel):
|
||||||
cols = self.colnames
|
cols = self.colnames
|
||||||
elif isinstance(cols, str):
|
elif isinstance(cols, str):
|
||||||
cols = [cols]
|
cols = [cols]
|
||||||
|
data = {}
|
||||||
|
for k in cols:
|
||||||
|
val = self._columns[k][rows]
|
||||||
|
if isinstance(val, BaseModel):
|
||||||
|
# special case where pandas will unpack a pydantic model
|
||||||
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
|
val = Series([val])
|
||||||
|
data[k] = val
|
||||||
data = {k: self._columns[k][rows] for k in cols}
|
data = {k: self._columns[k][rows] for k in cols}
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
@ -244,7 +256,9 @@ class VectorIndexMixin(BaseModel):
|
||||||
|
|
||||||
DYNAMIC_TABLE_IMPORTS = Imports(
|
DYNAMIC_TABLE_IMPORTS = Imports(
|
||||||
imports=[
|
imports=[
|
||||||
Import(module="pandas", objects=[ObjectImport(name="DataFrame")]),
|
Import(
|
||||||
|
module="pandas", objects=[ObjectImport(name="DataFrame"), ObjectImport(name="Series")]
|
||||||
|
),
|
||||||
Import(
|
Import(
|
||||||
module="typing",
|
module="typing",
|
||||||
objects=[
|
objects=[
|
||||||
|
|
|
@ -1,14 +1,9 @@
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
from datetime import datetime, date
|
|
||||||
from decimal import Decimal
|
from ...hdmf_common.v1_8_0.hdmf_common_base import Data
|
||||||
from enum import Enum
|
from pandas import DataFrame, Series
|
||||||
import re
|
from typing import Any, ClassVar, List, Dict, Optional, Union, overload, Tuple
|
||||||
import sys
|
from pydantic import BaseModel, ConfigDict, Field, RootModel, model_validator
|
||||||
import numpy as np
|
|
||||||
from ...hdmf_common.v1_8_0.hdmf_common_base import Data, Container
|
|
||||||
from pandas import DataFrame
|
|
||||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, overload, Tuple
|
|
||||||
from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator, model_validator
|
|
||||||
from numpydantic import NDArray, Shape
|
from numpydantic import NDArray, Shape
|
||||||
|
|
||||||
metamodel_version = "None"
|
metamodel_version = "None"
|
||||||
|
@ -198,6 +193,11 @@ class DynamicTableMixin(BaseModel):
|
||||||
rows, cols = item
|
rows, cols = item
|
||||||
if isinstance(cols, (int, slice)):
|
if isinstance(cols, (int, slice)):
|
||||||
cols = self.colnames[cols]
|
cols = self.colnames[cols]
|
||||||
|
|
||||||
|
if isinstance(rows, int) and isinstance(cols, str):
|
||||||
|
# single scalar value
|
||||||
|
return self._columns[cols][rows]
|
||||||
|
|
||||||
data = self._slice_range(rows, cols)
|
data = self._slice_range(rows, cols)
|
||||||
return DataFrame.from_dict(data)
|
return DataFrame.from_dict(data)
|
||||||
else:
|
else:
|
||||||
|
@ -210,8 +210,14 @@ class DynamicTableMixin(BaseModel):
|
||||||
cols = self.colnames
|
cols = self.colnames
|
||||||
elif isinstance(cols, str):
|
elif isinstance(cols, str):
|
||||||
cols = [cols]
|
cols = [cols]
|
||||||
|
data = {}
|
||||||
data = {k: self._columns[k][rows] for k in cols}
|
for k in cols:
|
||||||
|
val = self._columns[k][rows]
|
||||||
|
if isinstance(val, BaseModel):
|
||||||
|
# special case where pandas will unpack a pydantic model
|
||||||
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
|
val = Series([val])
|
||||||
|
data[k] = val
|
||||||
return data
|
return data
|
||||||
|
|
||||||
def __setitem__(self, key: str, value: Any) -> None:
|
def __setitem__(self, key: str, value: Any) -> None:
|
||||||
|
|
|
@ -5,6 +5,8 @@ import pytest
|
||||||
|
|
||||||
# FIXME: Make this just be the output of the provider by patching into import machinery
|
# FIXME: Make this just be the output of the provider by patching into import machinery
|
||||||
from nwb_linkml.models.pydantic.core.v2_7_0.namespace import (
|
from nwb_linkml.models.pydantic.core.v2_7_0.namespace import (
|
||||||
|
Device,
|
||||||
|
DynamicTableRegion,
|
||||||
ElectricalSeries,
|
ElectricalSeries,
|
||||||
ElectrodeGroup,
|
ElectrodeGroup,
|
||||||
ExtracellularEphysElectrodes,
|
ExtracellularEphysElectrodes,
|
||||||
|
@ -18,18 +20,95 @@ def electrical_series() -> Tuple["ElectricalSeries", "ExtracellularEphysElectrod
|
||||||
"""
|
"""
|
||||||
n_electrodes = 5
|
n_electrodes = 5
|
||||||
n_times = 100
|
n_times = 100
|
||||||
data = np.arange(0, n_electrodes * n_times).reshape(n_times, n_electrodes)
|
data = np.arange(0, n_electrodes * n_times).reshape(n_times, n_electrodes).astype(float)
|
||||||
timestamps = np.linspace(0, 1, n_times)
|
timestamps = np.linspace(0, 1, n_times)
|
||||||
|
|
||||||
|
device = Device(name="my electrode")
|
||||||
|
|
||||||
# electrode group is the physical description of the electrodes
|
# electrode group is the physical description of the electrodes
|
||||||
electrode_group = ElectrodeGroup(
|
electrode_group = ElectrodeGroup(
|
||||||
name="GroupA",
|
name="GroupA",
|
||||||
|
device=device,
|
||||||
|
description="an electrode group",
|
||||||
|
location="you know where it is",
|
||||||
)
|
)
|
||||||
|
|
||||||
# make electrodes tables
|
# make electrodes tables
|
||||||
electrodes = ExtracellularEphysElectrodes(
|
electrodes = ExtracellularEphysElectrodes(
|
||||||
|
description="idk these are also electrodes",
|
||||||
id=np.arange(0, n_electrodes),
|
id=np.arange(0, n_electrodes),
|
||||||
x=np.arange(0, n_electrodes),
|
x=np.arange(0, n_electrodes).astype(float),
|
||||||
y=np.arange(n_electrodes, n_electrodes * 2),
|
y=np.arange(n_electrodes, n_electrodes * 2).astype(float),
|
||||||
group=[electrode_group] * n_electrodes,
|
group=[electrode_group] * n_electrodes,
|
||||||
|
group_name=[electrode_group.name] * n_electrodes,
|
||||||
|
location=[str(i) for i in range(n_electrodes)],
|
||||||
|
extra_column=["sup"] * n_electrodes,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
electrical_series = ElectricalSeries(
|
||||||
|
name="my recording!",
|
||||||
|
electrodes=DynamicTableRegion(
|
||||||
|
table=electrodes, value=np.arange(0, n_electrodes), name="electrodes", description="hey"
|
||||||
|
),
|
||||||
|
timestamps=timestamps,
|
||||||
|
data=data,
|
||||||
|
)
|
||||||
|
return electrical_series, electrodes
|
||||||
|
|
||||||
|
|
||||||
|
def test_dynamictable_indexing(electrical_series):
|
||||||
|
"""
|
||||||
|
Can index values from a dynamictable
|
||||||
|
"""
|
||||||
|
series, electrodes = electrical_series
|
||||||
|
|
||||||
|
colnames = [
|
||||||
|
"id",
|
||||||
|
"x",
|
||||||
|
"y",
|
||||||
|
"group",
|
||||||
|
"group_name",
|
||||||
|
"location",
|
||||||
|
"extra_column",
|
||||||
|
]
|
||||||
|
dtypes = [
|
||||||
|
np.dtype("int64"),
|
||||||
|
np.dtype("float64"),
|
||||||
|
np.dtype("float64"),
|
||||||
|
] + ([np.dtype("O")] * 4)
|
||||||
|
|
||||||
|
row = electrodes[0]
|
||||||
|
# successfully get a single row :)
|
||||||
|
assert row.shape == (1, 7)
|
||||||
|
assert row.dtypes.values.tolist() == dtypes
|
||||||
|
assert row.columns.tolist() == colnames
|
||||||
|
|
||||||
|
# slice a range of rows
|
||||||
|
rows = electrodes[0:3]
|
||||||
|
assert rows.shape == (3, 7)
|
||||||
|
assert rows.dtypes.values.tolist() == dtypes
|
||||||
|
assert rows.columns.tolist() == colnames
|
||||||
|
|
||||||
|
# get a single column
|
||||||
|
col = electrodes["y"]
|
||||||
|
assert all(col == [5, 6, 7, 8, 9])
|
||||||
|
|
||||||
|
# get a single cell
|
||||||
|
val = electrodes[0, "y"]
|
||||||
|
assert val == 5
|
||||||
|
val = electrodes[0, 2]
|
||||||
|
assert val == 5
|
||||||
|
|
||||||
|
# get a slice of rows and columns
|
||||||
|
subsection = electrodes[0:3, 0:3]
|
||||||
|
assert subsection.shape == (3, 3)
|
||||||
|
assert subsection.columns.tolist() == colnames[0:3]
|
||||||
|
assert subsection.dtypes.values.tolist() == dtypes[0:3]
|
||||||
|
|
||||||
|
|
||||||
|
def test_dynamictable_append_column():
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def test_dynamictable_append_row():
|
||||||
|
pass
|
||||||
|
|
Loading…
Reference in a new issue